The quiescent spectral energy distribution of V404 Cyg
Monthly Notices of the Royal Astronomical Society 399:4 (2009) 2239-2248
Abstract:
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, ultraviolet (UV) and X-ray coverage is simultaneous. We supplement the SED with additional non-simultaneous data in the optical through infrared where necessary. The compiled SED is the most complete available for this, the X-ray and radio brightest quiescent black hole system. We find no need for a substantial contribution from accretion light from the near-UV to the near-IR, and in particular the weak UV emission constrains published spectral models for V404 Cyg. We confirm that no plausible companion spectrum and interstellar extinction can fully explain the mid-IR, however, and an infrared (IR) excess from a jet or cool disc appears to be required. The X-ray spectrum is consistent with a F ∼ 2 power law as found by all other studies to date. There is no evidence for any variation in the hardness over a range of a factor of 10 in luminosity. The radio flux is consistent with a flat spectrum (in f ν). The break frequency between a flat and optically thin spectrum most likely occurs in the mid or far-IR, but is not strongly constrained by these data. We find the radio to be substantially variable but with no clear correlation with X-ray variability. © 2009 RAS.A global study of X-ray binaries
International Conference Recent Advances in Natural Language Processing, RANLP (2008)
Abstract:
We present preliminary results on a global study of X-ray binaries using 14 Ms of data from the Rossi X-ray Timing Explorer RXTE satellite. Our initial study on GX 339-4 is recapped as an introduction to the methods used. We use a consistent analysis scheme for all objects, with three different spectral models to fit the powerlaw and disc components. We also take into account the possibility of a line being present in the data. The resulting almost 4000 observations allow the tracking of the spectral properties of the binaries as they evolve through an outburst. Our investigations concentrate on the disc and line properties of the binaries when in outburst. We also show the Disc-Fraction Luminosity diagram for the population of X-ray binaries studied which will enable us to further links with AGN. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.Evolution of the disc radii during outburst of x-ray binaries as infered from thermal emission
International Conference Recent Advances in Natural Language Processing, RANLP (2008)
Abstract:
Compact object displays drastic spectral and timing changing from the beginning to the end of an outburst, showing the different efficiencies of accretion processes. Black hole binaries hence exhibit schematically two different states in X-ray spectra: The first dominated by a thermal component and the second by a hard powerlaw shape like. Whereas the hard component is often attributed to the emission of a radiatively inefficient corona, the thermal component is interpreted as the emission of the optically thick accretion disc. The commonly accepted picture suggests that the observed transition between hard and soft states is associated by a drop in the accretion efficiency of the thermal component by a recession of the internal disc radius in hard states. However, recent studies based on relativistically broadened iron line and the thermal component strength analysis would tend to show the presence of the disc in the vicinity of the horizon. By a reanalysis of archive spectra where thermal emission is present, we tracked the values of the disc radii during outbursts among several sources. Indeed, whereas a constant inner radius would imply that the disc luminosity should monotonically depends on the temperature, we show that this relationship seems to deviate at the lowest luminosities. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.High energy astrophysics with the next generation of radio astronomy facilities
International Conference Recent Advances in Natural Language Processing, RANLP (2008)
Abstract:
High energy astrophysics has made good use of combined high energy (X-ray, g-ray) and radio observations to uncover connections between outbursts, accretion, particle acceleration and kinetic feedback to the local ambient medium. In the field of microquasars the connections have been particularly important. However, radio astronomy has been relying on essentially the same facilities for the past ∼ 25 years, whereas high-energy astrophysics, in particular space-based research, has had a series of newer and more powerful missions. In the next fifteen years this imbalance is set to be redressed, with a whole familiy of new radio facilities under development en route to the Square Kilometre Array (SKA) in the 2020s. In this brief review I will summarize these future prospects for radio astronomy, and focus on possibly the most exciting of the new facilities to be built in the next decade, the Low Frequency Array LOFAR, and its uses in high energy astrophysics. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.Internal shocks model for microquasar jets
International Conference Recent Advances in Natural Language Processing, RANLP (2008)