Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Radio observations of the Black Hole X-ray Binary EXO 1846-031 re-awakening from a 34-year slumber

Monthly Notices of the Royal Astronomical Society Oxford University Press 517:2 (2022) 2801-2817

Authors:

Dra Williams, Se Motta, R Fender, Jca Miller-Jones, J Neilsen, Jr Allison, J Bright, I Heywood, Pfl Jacob, L Rhodes, E Tremou, Pa Woudt, J van den Eijnden, F Carotenuto, Da Green, D Titterington, Aj van der Horst, P Saikia

Abstract:

We present radio [1.3 GHz MeerKAT, 4–8 GHz Karl G. Jansky Very Large Array (VLA), and 15.5 GHz Arcminute Microkelvin Imager Large Array (AMI-LA)] and X-ray (Swift and MAXI) data from the 2019 outburst of the candidate Black Hole X-ray Binary (BHXB) EXO 1846−031. We compute a Hardness–Intensity diagram, which shows the characteristic q-shaped hysteresis of BHXBs in outburst. EXO 1846−031 was monitored weekly with MeerKAT and approximately daily with AMI-LA. The VLA observations provide sub-arcsecond-resolution images at key points in the outburst, showing moving radio components. The radio and X-ray light curves broadly follow each other, showing a peak on ∼MJD 58702, followed by a short decline before a second peak between ∼MJD 58731–58739. We estimate the minimum energy of these radio flares from equipartition, calculating values of Emin ∼ 4 × 1041 and 5 × 1042 erg, respectively. The exact date of the return to ‘quiescence’ is missed in the X-ray and radio observations, but we suggest that it likely occurred between MJD 58887 and 58905. From the Swift X-ray flux on MJD 58905 and assuming the soft-to-hard transition happened at 0.3–3 per cent Eddington, we calculate a distance range of 2.4–7.5 kpc. We computed the radio:X-ray plane for EXO 1846−031 in the ‘hard’ state, showing that it is most likely a ‘radio-quiet’ BH, preferentially at 4.5 kpc. Using this distance and a jet inclination angle of θ = 73◦, the VLA data place limits on the intrinsic jet speed of βint = 0.29c, indicating subluminal jet motion.
More details from the publisher
Details from ORA
More details

A refined dynamical mass for the black hole in the X-ray transient XTE J1859+226

(2022)

Authors:

IV Yanes Rizo, MAP Torres, J Casares, SE Motta, T Muñoz-Darias, P Rodríguez-Gil, M Armas Padilla, F Jiménez-Ibarra, PG Jonker, J Corral-Santana, R Fender
More details from the publisher

Radio observations of the Black Hole X-ray Binary EXO 1846-031 re-awakening from a 34-year slumber

(2022)

Authors:

DRA Williams, SE Motta, R Fender, JCA Miller-Jones, J Neilsen, JR Allison, J Bright, I Heywood, PFL Jacob, L Rhodes, E Tremou, P Woudt, J van den Eijnden, F Carotenuto, DA Green, D Titterington, AJ van der Horst, P Saikia
More details from the publisher
Details from ArXiV

MeerKAT radio observations of the neutron star low-mass X-ray binary Cen X–4 at low accretion rates

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 516:2 (2022) 2641-2652

Authors:

J van den Eijnden, R Fender, JCA Miller-Jones, TD Russell, P Saikia, GR Sivakoff, F Carotenuto
More details from the publisher
More details

Discovery of optical and infrared accretion disc wind signatures in the black hole candidate MAXI J1348–630

Astronomy & Astrophysics EDP Sciences 664 (2022) a100

Authors:

G Panizo-Espinar, M Armas Padilla, T Muñoz-Darias, KII Koljonen, VA Cúneo, J Sánchez-Sierras, D Mata Sánchez, J Casares, J Corral-Santana, RP Fender, F Jiménez-Ibarra, G Ponti, D Steeghs, MAP Torres
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet