Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Day-time-scale variability in the radio light curve of the Tidal Disruption Event AT2022cmc: confirmation of a highly relativistic outflow

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 521:1 (2023) 389-395

Authors:

L Rhodes, JS Bright, R Fender, I Sfaradi, DA Green, A Horesh, K Mooley, D Pasham, S Smartt, DJ Titterington, AJ van der Horst, DRA Williams
More details from the publisher

The 2019 outburst of AMXP SAX J1808.4–3658 and radio follow up of MAXI J0911–655 and XTE J1701–462

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:2 (2023) 2806-2813

Authors:

Kvs Gasealahwe, Im Monageng, Robert P Fender, Pa Woudt, Sara Elisa Motta, Jakob van den Eijnden, Dra Williams, Ian Heywood, S Bloemen, Pj Groot, P Vreeswijk, V McBride, M Klein-Wolt, E Kording, R Le Poole, D Pieterse, S de Wet

Abstract:

We present radio coverage of the 2019 outburst of the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4–3658, obtained with MeerKAT. We compare these data to contemporaneous X-ray and optical measurements in order to investigate the coupling between accretion and jet formation in this system, while the optical light curve provides greater detail of the outburst. The reflaring activity following the main outburst peak was associated with a radio re-brightening, indicating a strengthening of the jet in this phase of the outburst. We place quasi-simultaneous radio and X-ray measurements on the global radio:X-ray plane for X-ray binaries, and show they reside in the same region of luminosity space as previous outburst measurements, but significantly refine the correlation for this source. We also present upper limits on the radio emission from the AMXP MAXI J0911–655 and the transitional Z/Atoll-type transient XTE J1701–462. In the latter source, we also confirm that nearby large-scale structures reported in previous radio observations of the source are persistent over a period of ∼15 yr, and so are almost certainly background radio galaxies and not associated with the X-ray transient.
More details from the publisher
Details from ORA
More details

The 2019 outburst of AMXP SAX J1808.4-3658 and radio follow up of MAXI J0911-655 and XTE J1701-462

(2023)

Authors:

KVS Gasealahwe, IM Monageng, RP Fender, PA Woudt, SE Motta, J van den Eijnden, DRA Williams, I Heywood, S Bloemen, PJ Groot, P Vreeswijk, V McBride, M Klein-Wolt, E Körding, R Le Poole, D Pieterse, S de Wet
More details from the publisher

FRB 20210405I: a nearby Fast Radio Burst localised to sub-arcsecond precision with MeerKAT

(2023)

Authors:

Laura Nicole Driessen, Ewan Barr, David Buckley, Manisha Caleb, Hao Chen, Weiwei Chen, Mariusz Gromadzki, Fabian Jankowski, Renee Kraan-Korteweg, Michael Kramer, Jesse Palmerio, Kaustubh Rajwade, Ben Stappers, Evangelia Tremou, Susanna Vergani, Patrick Woudt, Mechiel Christiaan Bezuidenhout, Mateusz Malenta, Vincent Morello, Sotiris Sanidas, Mayuresh Surnis, Rob Fender
More details from the publisher

Particle acceleration and high energy emission in the white dwarf binaries AE Aquarii and AR Scorpii

World Scientific Publishing (2023) 4522-4531

Authors:

PJ Meintjes, ST Madzime, Q Kaplan, HJ van Heerden, KK Singh, DAH Buckley, PA Woudt, R Fender
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet