Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

A persistent ultraviolet outflow from an accreting neutron star binary transient

Nature Springer Nature 603:7899 (2022) 52-57

Authors:

N Castro Segura, C Knigge, KS Long, D Altamirano, M Armas Padilla, C Bailyn, DAH Buckley, DJK Buisson, J Casares, P Charles, JA Combi, VA Cúneo, ND Degenaar, S del Palacio, M Díaz Trigo, R Fender, P Gandhi, M Georganti, C Gutiérrez, JV Hernandez Santisteban, F Jiménez-Ibarra, J Matthews, M Méndez, M Middleton, T Muñoz-Darias, M Özbey Arabacı, M Pahari, L Rhodes, TD Russell, S Scaringi, J van den Eijnden, G Vasilopoulos, FM Vincentelli, P Wiseman
More details from the publisher
More details
More details

A persistent ultraviolet outflow from an accreting neutron star binary transient

(2022)

Authors:

N Castro Segura, C Knigge, KS Long, D Altamirano, M Armas Padilla, C Bailyn, DAH Buckley, DJK Buisson, J Casares, P Charles, JA Combi, VA Cúneo, ND Degenaar, S del Palacio, M Díaz Trigo, R Fender, P Gandhi, M Georganti, C Gutiérrez, JV Hernandez Santisteban, F Jiménez-Ibarra, J Matthews, M Méndez, M Middleton, T Muñoz-Darias, M Özbey Arabacı, M Pahari, L Rhodes, TD Russell, S Scaringi, J van den Eijnden, G Vasilopoulos, FM Vincentelli, P Wiseman
More details from the publisher

A Late-Time Radio Flare following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh

(2022)

Authors:

I Sfaradi, A Horesh, R Fender, DA Green, DRA Williams, J Bright, S Schulze
More details from the publisher

MeerKAT radio detection of the Galactic black hole candidate Swift J1842.5−1124 during its 2020 outburst

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 1258-1263

Authors:

X Zhang, W Yu, SE Motta, R Fender, P Woudt, JCA Miller-Jones, GR Sivakoff
More details from the publisher
More details
More details

The detection of radio emission from known X-ray flaring star EXO 040830−7134.7

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 1083-1092

Authors:

LN Driessen, DRA Williams, I McDonald, BW Stappers, DAH Buckley, RP Fender, PA Woudt
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet