Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

21 new long-term variables in the GX 339-4 field: two years of MeerKAT monitoring

(2022)

Authors:

LN Driessen, BW Stappers, E Tremou, RP Fender, PA Woudt, R Armstrong, S Bloemen, P Groot, I Heywood, A Horesh, AJ van der Horst, E Koerding, VA McBride, JCA Miller-Jones, KP Mooley, A Rowlinson, RAMJ Wijers
More details from the publisher
Details from ArXiV

A persistent ultraviolet outflow from an accreting neutron star binary transient

(2022)

Authors:

N Castro Segura, C Knigge, KS Long, D Altamirano, M Armas Padilla, C Bailyn, DAH Buckley, DJK Buisson, J Casares, P Charles, JA Combi, VA Cúneo, ND Degenaar, S del Palacio, M Díaz Trigo, R Fender, P Gandhi, M Georganti, C Gutiérrez, JV Hernandez Santisteban, F Jiménez-Ibarra, J Matthews, M Méndez, M Middleton, T Muñoz-Darias, M Özbey Arabacı, M Pahari, L Rhodes, TD Russell, S Scaringi, J van den Eijnden, G Vasilopoulos, FM Vincentelli, P Wiseman
More details from the publisher

A persistent ultraviolet outflow from an accreting neutron star binary transient.

Nature 603:7899 (2022) 52-57

Authors:

N Castro Segura, C Knigge, KS Long, D Altamirano, M Armas Padilla, C Bailyn, DAH Buckley, DJK Buisson, J Casares, P Charles, JA Combi, VA Cúneo, ND Degenaar, S Del Palacio, M Díaz Trigo, R Fender, P Gandhi, M Georganti, C Gutiérrez, JV Hernandez Santisteban, F Jiménez-Ibarra, J Matthews, M Méndez, M Middleton, T Muñoz-Darias, M Özbey Arabacı, M Pahari, L Rhodes, TD Russell, S Scaringi, J van den Eijnden, G Vasilopoulos, FM Vincentelli, P Wiseman

Abstract:

All disc-accreting astrophysical objects produce powerful disc winds. In compact binaries containing neutron stars or black holes, accretion often takes place during violent outbursts. The main disc wind signatures during these eruptions are blue-shifted X-ray absorption lines, which are preferentially seen in disc-dominated 'soft states'1,2. By contrast, optical wind-formed lines have recently been detected in 'hard states', when a hot corona dominates the luminosity3. The relationship between these signatures is unknown, and no erupting system has as yet revealed wind-formed lines between the X-ray and optical bands, despite the many strong resonance transitions in this ultraviolet (UV) region4. Here we report that the transient neutron star binary Swift J1858.6-0814 exhibits wind-formed, blue-shifted absorption lines associated with C IV, N V and He II in time-resolved UV spectroscopy during a luminous hard state, which we interpret as a warm, moderately ionized outflow component in this state. Simultaneously observed optical lines also display transient blue-shifted absorption. Decomposing the UV data into constant and variable components, the blue-shifted absorption is associated with the former. This implies that the outflow is not associated with the luminous flares in the data. The joint presence of UV and optical wind features reveals a multi-phase and/or spatially stratified evaporative outflow from the outer disc5. This type of persistent mass loss across all accretion states has been predicted by radiation-hydrodynamic simulations6 and helps to explain the shorter-than-expected duration of outbursts7.
More details from the publisher
More details
More details

A Late-Time Radio Flare following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh

(2022)

Authors:

I Sfaradi, A Horesh, R Fender, DA Green, DRA Williams, J Bright, S Schulze
More details from the publisher

MeerKAT radio detection of the Galactic black hole candidate Swift J1842.5−1124 during its 2020 outburst

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 1258-1263

Authors:

X Zhang, W Yu, SE Motta, R Fender, P Woudt, JCA Miller-Jones, GR Sivakoff
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet