Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

The 2018 outburst of BHXB H1743−322 as seen with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 491:1 (2019) L28-L33

Authors:

David Williams, R Fender, J Bright, I Heywood, E Tremou, P Woudt, DAH Buckley, S Corbel, M Coriat, T Joseph, L Rhodes, GR Sivakoff, AJVD Horst

Abstract:

In recent years, the black hole candidate X-ray binary system H1743-322 has undergone outbursts and it has been observed with X-ray and radio telescopes. We present 1.3 GHz MeerKAT radio data from the ThunderKAT Large Survey Project on radio transients for the 2018 outburst of H1743-322. We obtain seven detections from a weekly monitoring programme and use publicly available Swift X-ray Telescope and MAXI data to investigate the radio/X-ray correlation of H1743-322 for this outburst. We compare the 2018 outburst with those reported in the literature for this system and find that the X-ray outburst reported is similar to previously reported 'hard-only' outbursts. As in previous outbursts, H1743-322 follows the 'radio-quiet' correlation in the radio/X-ray plane for black hole X-ray binaries, and the radio spectral index throughout the outburst is consistent with the 'radio-quiet' population.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571

Astrophysical Journal American Astronomical Society 883:2 (2019) 198

Authors:

Td Russell, Aj Tetarenko, Jca Miller-Jones, Gr Sivakoff, As Parikh, S Rapisarda, R Wijnands, S Corbel, E Tremou, D Altamirano, Mc Baglio, C Ceccobello, N Degenaar, Jvd Eijnden, R Fender, I Heywood, Ha Krimm, M Lucchini, S Markoff, Dm Russell, R Soria, Pa Woudt

Abstract:

MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to ≤45° and ≥0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
More details from the publisher
Details from ORA

Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571

ASTROPHYSICAL JOURNAL 883:2 (2019) ARTN 198

Authors:

Td Russell, Aj Tetarenko, Jca Miller-Jones, Gr Sivakoff, As Parikh, S Rapisarda, R Wijnands, S Corbel, E Tremou, D Altamirano, Mc Baglio, C Ceccobello, N Degenaar, J van den Eijnden, R Fender, I Heywood, Ha Krimm, M Lucchini, S Markoff, Dm Russell, R Soria, Pa Woudt
More details from the publisher
More details

The 2018 outburst of BHXB H1743-322 as seen with MeerKAT

(2019)

Authors:

DRA Williams, SE Motta, R Fender, J Bright, I Heywood, E Tremou, P Woudt, DAH Buckley, S Corbel, M Coriat, T Joseph, L Rhodes, GR Sivakoff, AJ van der Horst
More details from the publisher

Late-outburst radio flaring in SS Cyg and evidence for a powerful kinetic output channel in cataclysmic variables

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) L76-L80

Authors:

Rob Fender, Joe Bright, Kunal Mooley, James Miller-Jones

Abstract:

Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their ubiquity and energetic significance for the accretion flow has remained uncertain. We present new radio observations of the CV SS Cyg with Arcminute Microkelvin Imager Large Array, which show for the second time late-ouburst radio flaring, in 2016 April. This flaring occurs during the optical flux decay phase, about 10 d after the well-established early-time radio flaring. We infer that both the early- and late-outburst flares are a common feature of the radio outbursts of SS Cyg, albeit of variable amplitudes, and probably of all dwarf novae. We furthermore present new analysis of the physical conditions in the best-sampled late-outburst flare, from 2016 February, which showed clear optical depth evolution. From this we can infer that the synchrotron-emitting plasma was expanding at about 1 per cent of the speed of light, and at peak had a magnetic field of order 1 G and total energy content ≥10 erg. While this result is independent of the geometry of the synchrotron-emitting region, the most likely origin is in a jet carrying away a significant amount of the available accretion power. 33
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet