Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Synchrotron self absorption and the minimum energy of optically thick radio flares from stellar mass black holes

(2019)

Authors:

Rob Fender, Joe Bright
More details from the publisher

Mass and spin measurements for the neutron star 4U1608−52 through the relativistic precession model

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 486:4 (2019) 4485-4497

Authors:

L du Buisson, S Motta, R Fender
More details from the publisher
More details

Accretion and Outflow in V404 Cyg

(2019)

Authors:

J Casares, T Muñoz-Darias, D Mata Sanchez, PA Charles, MAP Torres, M Armas Padilla, RP Fender, J Garcia-Rojas
More details from the publisher

Hard-state accretion disk winds from black holes: the revealing case of MAXI J1820+070

Astrophysical Journal Letters IOP Science 879:1 (2019) L4

Authors:

T Munoz-Darias, F Jimenez-Ibarra, G Panizo-Espinar, J Casares, D Mata Sanchez, G Ponti, Rp Fender, Dah Buckley, P Garnavich, Map Torres, M Armas Padilla, Pa Charles, Jm Corral-Santana, Jje Kajava, Ej Kotze, C Littlefield, J Sanchez-Sierras, D Steeghs, J Thomas

Abstract:

We report on a detailed optical spectroscopic follow-up of the black hole (BH) transient MAXI J1820+070 (ASASSN-18ey). The observations cover the main part of the X-ray binary outburst, when the source alternated between hard and soft states following the classical pattern widely seen in other systems. We focus the analysis on the He i emission lines at 5876 and 6678 as well as on Hα. We detect clear accretion disk wind features (P-Cyg profiles and broad emission line wings) in the hard state, both during outburst rise and decay. These are not witnessed during the several months long soft state. However, our data suggest that the visibility of the outflow might be significantly affected by the ionization state of the accretion disk. The terminal velocity of the wind is above ∼1200 km s , which is similar to outflow velocities derived from (hard-state) optical winds and (soft-state) X-ray winds in other systems. The wind signatures, in particular the P-Cyg profiles, are very shallow, and their detection has only been possible thanks to a combination of source brightness and intense monitoring at very high signal-to-noise. This study indicates that cold, optical winds are most likely a common feature of BH accretion, and therefore, that wind-like outflows are a general mechanism of mass and angular momentum removal operating throughout the entire X-ray binary outburst. -1
More details from the publisher
Details from ORA
More details

ALMA observations of A0620-00: fresh clues on the nature of quiescent black hole X-ray binary jets

Monthly Notices of the Royal Astronomical Society Oxford University Press 488:1 (2019) 191-197

Authors:

Elena Gallo, Richard Teague, Richard M Plotkin, James CA Miller-Jones, David M Russell, Tolga Dincer, Charles Bailyn, Thomas J Maccarone, Sera Markoff, Rob P Fender

Abstract:

We report on Atacama Large Millimeter Array (ALMA) continuum observations of the black hole X-ray binary A0620–00 at an X-ray luminosity nine orders of magnitude sub-Eddington. The system was significantly detected at 98 GHz (at 44 ± 7 μJy) and only marginally at 233 GHz (20 ± 8 μJy), about 40 d later. These results suggest either an optically thin sub-mm synchrotron spectrum, or highly variable sub-mm jet emission on month time-scales. Although the latter appears more likely, we note that, at the time of the ALMA observations, A0620–00 was in a somewhat less active optical-IR state than during all published multiwavelength campaigns when a flat-spectrum, partially self-absorbed jet has been suggested to extend from the radio to the mid-IR regime. Either interpretation is viable in the context of an internal shock model, where the jet’s spectral shape and variability are set by the power density spectrum of the shells’ Lorentz factor fluctuations. While strictly simultaneous radio–mm-IR observations are necessary to draw definitive conclusions for A0620–00, the data presented here, in combination with recent radio and sub-mm results from higher luminosity systems, demonstrate that jets from black hole X-ray binaries exhibit a high level of variability – either in flux density or intrinsic spectral shape, or both – across a wide spectrum of Eddington ratios. This is not in contrast with expectations from an internal shock model, where lower jet power systems can be expected to exhibit larger fractional variability owing to an overall decrease in synchrotron absorption.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • Current page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet