Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

A connection between accretion states and the formation of ultrarelativistic outflows in a neutron star X-ray binary

Monthly Notices of the Royal Astronomical Society Oxford University Press 483:3 (2018) 3686-3699

Authors:

Sara Motta, RP Fender

Abstract:

The nearby accreting neutron star binary Sco X-1 is the closest example of ongoing relativistic jet production at high Eddington ratios. Previous radio studies have revealed that alongside mildly relativistic, radio-emitting ejecta, there is at times a much faster transfer of energy from the region of the accretion flow along the jet. The nature of this ultrarelativistic flow remains unclear and while there is some evidence for a similar phenomenon in other systems that might contain neutron stars, it has never been observed in a confirmed black hole system. We have compared these previous radio observations with a new analysis of simultaneous X-ray observations that were performed with the RXTE mission. We find that the ejection of the ultrarelativistic flow seems to be associated with the simultaneous appearance of two particular types of quasi-periodic oscillations in the X-ray power spectrum. In contrast, the mildly relativistic, radio-emitting outflows may be associated with flat-topped broad-band noise in the X-ray power spectrum. This is the first time a link, albeit tentative, has been found between these mysterious unseen flows and the accretion flow from which they are launched.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Don't Blink: Constraining the Circumstellar Environment of the Interacting Type Ia Supernova 2015cp

(2018)

Authors:

CE Harris, PE Nugent, A Horesh, JS Bright, RP Fender, ML Graham, K Maguire, M Smith, N Butler, S Valenti, AV Filippenko, O Fox, A Goobar, PL Kelly, KJ Shen
More details from the publisher

Classification of Multiwavelength Transients with Machine Learning

(2018)

Authors:

K Sooknunan, M Lochner, Bruce A Bassett, HV Peiris, R Fender, AJ Stewart, M Pietka, PA Woudt, JD McEwen, O Lahav
More details from the publisher

A Strong Jet Signature in the Late-time Light Curve of GW170817

Astrophysical Journal Letters American Astronomical Society 868:1 (2018) L11

Authors:

KP Mooley, DA Frail, D Dobie, E Lenc, A Corsi, K De, AJ Nayana, S Makhathini, Ian Heywood, T Murphy, DL Kaplan, P Chandra, O Smirnov, E Nakar, G Hallinan, F Camilo, R Fender, S Goedhart, P Groot, MM Kasliwal, PA Woudt

Abstract:

We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Don’t blink: constraining the circumstellar environment of the interacting type Ia supernova 2015cp

Astrophysical Journal American Astronomical Society 868:21 (2018)

Authors:

CE Harris, PE Nugent, A Horesh, Joe Bright, Robert Fender, ML Graham, K Maguire, M Smith, N Butler, S Valenti, AV Filippenko, O Fox, A Goobar, PL Kelly, KJ Shen

Abstract:

Despite their cosmological utility, the progenitors of Type Ia supernovae (SNe Ia) are still unknown, with many efforts focused on whether accretion from a nondegenerate companion can grow a carbon–oxygen white dwarf to near the Chandrasekhar mass. The association of SNe Ia resembling SN 1991T ("91T-like") with circumstellar interaction may be evidence for this "single-degenerate" channel. However, the observed circumstellar medium (CSM) in these interacting systems is unlike a stellar wind—of particular interest, it is sometimes detached from the stellar surface, residing at ~1016 cm. A Hubble Space Telescope (HST) program to discover detached CSM around 91T-like SNe Ia successfully discovered interaction nearly two years after explosion in SN 2015cp (Graham et al. 2018). In this work, we present radio and X-ray follow-up observations of SN 2015cp and analyze them in the framework of Harris et al. (2016) to limit the properties of a constant-density CSM shell in this system. Assuming the HST detection took place shortly after the shock crossed the CSM, we constrain the total CSM mass in this system to be <0.5 ${M}_{\odot }$. This limit is comparable to the CSM mass of supernova PTF11kx, but does not rule out lower masses predicted for recurrent novae. From lessons learned modeling PTF11kx and SN 2015cp, we suggest a strategy for future observations of these events to increase the sample of known interacting SNe Ia.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet