Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

Nature Nature Publishing Group 551:7679 (2017) 210-213

Authors:

I Arcavi, DA Howell, D Kasen, L Bildsten, G Hosseinzadeh, C McCully, ZC Wong, A Gal-Yam, J Sollerman, F Taddia, G Leloudas, C Fremling, PE Nugent, A Horesh, K Mooley, C Rumsey, SB Cenko, ML Graham, DA Perley, E Nakar, NJ Shaviv, O Bromberg, KJ Shen, EO Ofek, Y Cao, X Wang, F Huang, L Rui, T Zhang, W Li, Z Li, J Zhang, S Valenti, D Guevel, B Shappee, CS Kochanek, TW-S Holoien, AV Filippenko, Robert Fender, A Nyholm, O Yaron, MM Kasliwal, M Sullivan, N Blagorodnova, RS Walters, R Lunnan, D Khazov, I Andreoni, RR Laher

Abstract:

Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.
More details from the publisher
Details from ORA
More details
More details

Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

(2017)

Authors:

Iair Arcavi, D Andrew Howell, Daniel Kasen, Lars Bildsten, Griffin Hosseinzadeh, Curtis McCully, Zheng Chuen Wong, Sarah Rebekah Katz, Avishay Gal-Yam, Jesper Sollerman, Francesco Taddia, Giorgos Leloudas, Christoffer Fremling, Peter E Nugent, Assaf Horesh, Kunal Mooley, Clare Rumsey, S Bradley Cenko, Melissa L Graham, Daniel A Perley, Ehud Nakar, Nir J Shaviv, Omer Bromberg, Ken J Shen, Eran O Ofek, Yi Cao, Xiaofeng Wang, Fang Huang, Liming Rui, Tianmeng Zhang, Wenxiong Li, Zhitong Li, Jujia Zhang, Stefano Valenti, David Guevel, Benjamin Shappee, Christopher S Kochanek, Thomas W-S Holoien, Alexei V Filippenko, Rob Fender, Anders Nyholm, Ofer Yaron, Mansi M Kasliwal, Mark Sullivan, Nadja Blagorodnova, Richard S Walters, Ragnhild Lunnan, Danny Khazov, Igor Andreoni, Russ R Laher, Nick Konidaris, Przemek Wozniak, Brian Bue
More details from the publisher

Paving the way to simultaneous multi-wavelength astronomy

New Astronomy Reviews Elsevier 79 (2017) 26-48

Authors:

MJ Middleton, P Casella, P Gandhi, E Bozzo, G Anderson, N Degenaar, I Donnarumma, G Israel, C Knigge, A Lohfink, S Markoff, T Marsh, N Rea, S Tingay, K Wiersema, D Altamirano, D Bhattacharya, WN Brandt, S Carey, P Charles, M Díaz Trigo, C Done, M Kotze, S Eikenberry, R Fender, P Ferruit, F Fürst, J Greiner, A Ingram, L Heil, P Jonker, S Komossa, B Leibundgut, T Maccarone, J Malzac, V McBride, J Miller-Jones, M Page, EM Rossi, DM Russell, T Shahbaz, GR Sivakoff, M Tanaka, DJ Thompson, M Uemura, P Uttley, G van Moorsel, M van Doesburgh, B Warner, B Wilkes, J Wilms, P Woudt
More details from the publisher

Radio Transients in the Era of Multi-Messenger Astrophysics

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 14:S339 (2017) 207-214

Authors:

GE Anderson, BW Stappers, I Andreoni, M Caleb, D Coppejans, S Corbel, RP Fender, M Giroletti, ML Graham, KV Sokolovsky, PA Woudt
More details from the publisher

An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system

Nature Astronomy Nature Publishing Group 1:12 (2017) 859-864

Authors:

P Gandhi, M Bachetti, VS Dhillon, Robert P Fender, LK Hardy, FA Harrison, SP Littlefair, J Malzac, S Markoff, TR Marsh, Kumar P Mooley, D Stern, JA Tomsick, DJ Walton, P Casella, F Vincentelli, D Altamirano, J Casares, C Ceccobello, PA Charles, C Ferrigno, RI Hynes, C Knigge, E Kuulkers, M Pahari, F Rahoui, DM Russell, AW Shaw

Abstract:

Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched 1-3 . Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial 4-8 . Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of 10 3 Schwarzschild radii for the main inner optical emission zone above the black hole 9 , constraining both internal shock 10 and magnetohydrodynamic 11 models. Similarities with blazars 12,13 suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags 8,14,15 , so this size scale may be a defining feature of such systems.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • Current page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet