Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

(2016)

Authors:

GE Anderson, A Horesh, KP Mooley, AP Rushton, RP Fender, TD Staley, MK Argo, RJ Beswick, PJ Hancock, MA Perez-Torres, YC Perrott, RM Plotkin, ML Pretorius, C Rumsey, DJ Titterington
More details from the publisher

The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

Monthly Notices of the Royal Astronomical Society Oxford University Press 466:3 (2016) 3648-3662

Authors:

GE Anderson, A Horesh, Kunal P Mooley, Anthony P Rushton, Robert P Fender, Timothy D Staley, MK Argo, RJ Beswick, PJ Hancock, MA Pérez-Torres, YC Perrott, RM Plotkin, ML Pretorius, C Rumsey, DJ Titterington

Abstract:

We present a radio light curve of supernova (SN) 2014C taken with the Arcminute Microkelvin Imager (AMI) Large Array at 15.7 GHz. Optical observations presented by Milisavljevic et al. demonstrated that SN 2014C metamorphosed from a stripped-envelope Type Ib SN into a strongly interacting Type IIn SN within 1 yr. The AMI light curve clearly shows two distinct radio peaks, the second being a factor of 4 times more luminous than the first peak. This double bump morphology indicates two distinct phases of mass-loss from the progenitor star with the transition between density regimes occurring at 100-200 d. This reinforces the interpretation that SN 2014C exploded in a low-density region before encountering a dense hydrogen-rich shell of circumstellar material that was likely ejected by the progenitor prior to the explosion. The AMI flux measurements of the first light-curve bump are the only reported observations taken within ~50 to ~125 d post-explosion, before the blast-wave encountered the hydrogen shell. Simplistic synchrotron self-absorption and free-free absorption modelling suggest that some physical properties of SN 2014C are consistent with the properties of other Type Ibc and IIn SNe. However, our single frequency data does not allow us to distinguish between these two models, which implies that they are likely too simplistic to describe the complex environment surrounding this event. Lastly, we present the precise radio location of SN 2014C obtained with the electronic Multi-Element Remotely Linked Interferometer Network, which will be useful for future very long baseline interferometry observations of the SN.
More details from the publisher
Details from ORA
More details

Disc–jet quenching of the galactic black hole Swift J1753.5−0127

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 463:1 (2016) 628-634

Authors:

AP Rushton, AW Shaw, RP Fender, D Altamirano, P Gandhi, P Uttley, PA Charles, M Kolehmainen, GE Anderson, C Rumsey, DJ Titterington
More details from the publisher
More details

Rapid Radio Flaring during an Anomalous Outburst of SS Cyg

(2016)

Authors:

KP Mooley, JCA Miller-Jones, RP Fender, GR Sivakoff, C Rumsey, Y Perrott, D Titterington, K Grainge, TD Russell, SH Carey, J Hickish, N Razavi-Ghods, A Scaife, P Scott, EO Waagen
More details from the publisher

Flares, wind and nebulae: the 2015 December mini-outburst of V404 Cygni

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) (2016) slw222

Authors:

T Mu noz-Darias, J Casares, D Mata Sánchez, RP Fender, M Armas Padilla, K Mooley, L Hardy, PA Charles, G Ponti, SE Motta, VS Dhillon, P Gandhi, F Jiménez Ibarra, T Butterley, S Carey, KJB Grainge, J Hickish, SP Littlefair, YC Perrott, N Razavi-Ghods, C Rumsey, AMM Scaife, PF Scott, DJ Titterington, RW Wilson
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Current page 64
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet