Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion

(2017)

Authors:

SE Motta, JJE Kajava, C Sánchez-Fernández, AP Beardmore, A Sanna, KL Page, R Fender, D Altamirano, P Charles, M Giustini, C Knigge, E Kuulkers, S Oates, JP Osborne
More details from the publisher

Resolved, expanding jets in the Galactic black hole candidate XTE J1908+094

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 468:3 (2017) 2788-2802

Authors:

AP Rushton, JCA Miller-Jones, PA Curran, GR Sivakoff, MP Rupen, Z Paragi, RE Spencer, J Yang, D Altamirano, T Belloni, RP Fender, HA Krimm, D Maitra, S Migliari, DM Russell, TD Russell, R Soria, V Tudose
More details from the publisher
More details

A tale of two transients: GW170104 and GRB170105A

(2017)

Authors:

V Bhalerao, MM Kasliwal, D Bhattacharya, A Corsi, E Aarthy, SM Adams, N Blagorodnova, T Cantwell, SB Cenko, R Fender, D Frail, R Itoh, J Jencson, N Kawai, AKH Kong, T Kupfer, A Kutyrev, J Mao, S Mate, NPS Mithun, K Mooley, DA Perley, YC Perrott, RM Quimby, AR Rao, LP Singer, V Sharma, DJ Titterington, E Troja, SV Vadawale, A Vibhute, H Vedantham, S Veilleux
More details from the publisher

A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population

(2017)

Authors:

CJ Law, MW Abruzzo, CG Bassa, GC Bower, S Burke-Spolaor, BJ Butler, T Cantwell, SH Carey, S Chatterjee, JM Cordes, P Demorest, J Dowell, R Fender, K Gourdji, K Grainge, JWT Hessels, J Hickish, VM Kaspi, TJW Lazio, MA McLaughlin, D Michilli, K Mooley, YC Perrott, SM Ransom, N Razavi-Ghods, M Rupen, A Scaife, P Scott, P Scholz, A Seymour, LG Spitler, K Stovall, SP Tendulkar, D Titterington, RS Wharton, PKG Williams
More details from the publisher

Extreme jet ejections from the black hole X-ray binary V404 Cygni

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3141-3162

Authors:

AJ Tetarenko, GR Sivakoff, JCA Miller-Jones, EW Rosolowsky, G Petitpas, M Gurwell, J Wouterloot, Robert Fender, S Heinz, D Maitra, SB Markoff, S Migliari, MP Rupen, Anthony P Rushton, DM Russell, TD Russell, CL Sarazin

Abstract:

We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of aBHXBjet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well.With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • Current page 62
  • Page 63
  • Page 64
  • Page 65
  • Page 66
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet