Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Orbital and superorbital variability of LS I +61 303 at low radio frequencies with GMRT and LOFAR

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 456:2 (2016) 1791-1802

Authors:

B Marcote, M Ribó, JM Paredes, CH Ishwara-Chandra, JD Swinbank, JW Broderick, S Markoff, R Fender, RAMJ Wijers, GG Pooley, AJ Stewart, ME Bell, RP Breton, D Carbone, S Corbel, J Eislöffel, H Falcke, J-M Grie smeier, M Kuniyoshi, M Pietka, A Rowlinson, M Serylak, AJ van der Horst, J van Leeuwen, MW Wise, P Zarka
More details from the publisher
More details

Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR⋆

Astronomy & Astrophysics EDP Sciences 586 (2016) a92

Authors:

M Pilia, JWT Hessels, BW Stappers, VI Kondratiev, M Kramer, J van Leeuwen, P Weltevrede, AG Lyne, K Zagkouris, TE Hassall, AV Bilous, RP Breton, H Falcke, J-M Grießmeier, E Keane, A Karastergiou, M Kuniyoshi, A Noutsos, S Osłowski, M Serylak, C Sobey, S ter Veen, A Alexov, J Anderson, A Asgekar, IM Avruch, ME Bell, MJ Bentum, G Bernardi, L Bîrzan, A Bonafede, F Breitling, JW Broderick, M Brüggen, B Ciardi, S Corbel, E de Geus, A de Jong, A Deller, S Duscha, J Eislöffel, RA Fallows, R Fender, C Ferrari, W Frieswijk, MA Garrett, AW Gunst, JP Hamaker, G Heald, A Horneffer, P Jonker, E Juette, G Kuper, P Maat, G Mann, S Markoff, R McFadden, D McKay-Bukowski, JCA Miller-Jones, A Nelles, H Paas, M Pandey-Pommier, M Pietka, R Pizzo, AG Polatidis, W Reich, H Röttgering, A Rowlinson, D Schwarz, O Smirnov, M Steinmetz, A Stewart, JD Swinbank, M Tagger, Y Tang, C Tasse, S Thoudam, MC Toribio, AJ van der Horst, R Vermeulen, C Vocks, RJ van Weeren, RAMJ Wijers, R Wijnands, SJ Wijnholds, O Wucknitz, P Zarka
More details from the publisher
More details

ThunderKAT: The MeerKAT Large survey project for image-plane radio transients

Proceedings of Science (2016)

Authors:

R Fender, P Woudt, R Armstrong, P Groot, V McBride, J Miller-Jones, K Mooley, B Stappers, R Wijers, M Bietenholz, S Blyth, M Bottcher, D Buckley, P Charles, L Chomiuk, D Coppejans, S Corbel, M Coriat, F Daigne, E de Blok, H Falcke, J Girard, I Heywood, A Horesh, J Horrell, P Jonker, T Joseph, A Kamble, C Knigge, E Körding, M Kotze, C Kouveliotou, C Lynch, T Maccarone, P Meintjes, S Migliari, T Murphy, T Nagayama, G Nelemans, G Nicholson, T O’Brien, A Oodendaal, N Oozeer, J Osborne, M Perez-Torres, S Ratcliffe, V Ribeiro, E Rol, A Rushton, A Scaife, M Schurch, G Sivakoff, T Staley, D Steeghs, I Stewart, J Swinbank, K van der Heyden, A van der Horst, B van Soelen, S Vergani, B Warner, K Wiersema

Abstract:

ThunderKAT is the image-plane transients programme for MeerKAT. The goal as outlined in 2010, and still today, is to find, identify and understand high-energy astrophysical processes via their radio emission (often in concert with observations at other wavelengths). Through a comprehensive and complementary programme of surveying and monitoring Galactic synchrotron transients (across a range of compact accretors and a range of other explosive phenomena) and exploring distinct populations of extragalactic synchrotron transients (microquasars, supernovae and possibly yet unknown transient phenomena) - both from direct surveys and commensal observations - we will revolutionise our understanding of the dynamic and explosive transient radio sky. As well as performing targeted programmes of our own, we have made agreements with the other MeerKAT large survey projects (LSPs) that we will also search their data for transients. This commensal use of the other surveys, which remains one of our key programme goals in 2016, means that the combined MeerKAT LSPs will produce by far the largest GHz-frequency radio transient programme to date.

A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

Science (New York, N.Y.) 351:6268 (2016) 62-65

Authors:

S van Velzen, GE Anderson, NC Stone, M Fraser, T Wevers, BD Metzger, PG Jonker, AJ van der Horst, TD Staley, AJ Mendez, JCA Miller-Jones, ST Hodgkin, HC Campbell, RP Fender

Abstract:

The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.
More details from the publisher
Details from ORA
More details
More details

The Balance of Power: Accretion and Feedback in Stellar Mass Black Holes

Springer International Publishing (2016) 65-100

Authors:

Rob Fender, Teo Muñoz-Darias
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet