Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Relativistic Jet from Black Hole

An artist's impression of a relativistic jet propagating away from a black hole at close to the speed of light. Such jets are formed by the inner regions of the accretion flow: matter flowing inwards towards the black hole, via processes which are not yet fully understood. The accretion flow emits primarily in X-rays, the relativistic jet in the radio band: by combing observations in each band we can try and understand how such jets form and how much energy they carry away from the black hole.

Professor Rob Fender

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Rob.Fender@physics.ox.ac.uk
Telephone: 01865 (2)73435
Denys Wilkinson Building, room 712
  • About
  • Publications

Transient astrophysics with the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

R Fender, A Stewart, JP Macquart, I Donnarumma, T Murphy, A Deller, Z Paragi, S Chatterjee

Abstract:

This chapter provides an overview of the possibilities for transient and variable-source astrophysics with the Square Kilometre Array. While subsequent chapters focus on the astrophysics of individual events, we focus on the broader picture, and how to maximise the science coming from the telescope. The SKA as currently designed will be a fantastic and ground-breaking facility for radio transient studies, but the scientifc yield will be dramatically increased by the addition of (i) near-real-time commensal searches of data streams for events, and (ii) on occasion, rapid robotic response to Target-of-Opprtunity style triggers.
Details from ArXiV

An Overview of Jets and Outflows in Stellar Mass Black Holes

Chapter in The Physics of Accretion onto Black Holes, Springer Nature 49 (2014) 323-337

Authors:

Rob Fender, Elena Gallo
More details from the publisher

The Youngest Known X-ray binary: CIrcinus X-1 and ITS natal supernova REMNANT

Astrophysical Journal 779:2 (2013)

Authors:

S Heinz, P Sell, RP Fender, PG Jonker, WN Brandt, DE Calvelo-Santos, AK Tzioumis, MA Nowak, NS Schulz, R Wijnands, M Van Der Klis

Abstract:

Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time. © 2013. The American Astronomical Society. All rights reserved..
More details from the publisher
More details

Black hole spin measurements through the relativistic precession model: XTE J1550-564

(2013)

Authors:

SE Motta, T Muñoz-Darias, A Sanna, R Fender, T Belloni, L Stella
More details from the publisher

Discovery of a new kind of explosive X-ray transient near M86

Astrophysical Journal 779:1 (2013)

Authors:

PG Jonker, A Glennie, M Heida, T Maccarone, S Hodgkin, G Nelemans, JCA Miller-Jones, MAP Torres, R Fender

Abstract:

We present the discovery of a new type of explosive X-ray flash in Chandra images of the old elliptical galaxy M86. This unique event is characterized by the peak luminosity of 6 × 1042 erg s-1 for the distance of M86, the presence of precursor events, the timescale between the precursors and the main event (∼4000 s), the absence of detectable hard X-ray and γ-ray emission, the total duration of the event, and the detection of a faint associated optical signal. The transient is located close to M86 in the Virgo cluster at the location where gas and stars are seen protruding from the galaxy probably due to an ongoing wet minor merger. We discuss the possible mechanisms for the transient and conclude that the X-ray flash could have been caused by the disruption of a compact white dwarf star by a ∼104 M black hole. Alternative scenarios such that of a foreground neutron star accreting an asteroid or the detection of an off-axis (short) γ-ray burst cannot be excluded at present. © 2013. The American Astronomical Society. All rights reserved..
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • Current page 97
  • Page 98
  • Page 99
  • Page 100
  • Page 101
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet