Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Pedro Ferreira

Professor of Astrophysics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
pedro.ferreira@physics.ox.ac.uk
Telephone: 01865 (2)73366
Denys Wilkinson Building, room 757
Personal Webpage
  • About
  • Publications

Euclid preparation

Astronomy & Astrophysics EDP Sciences 698 (2025) ARTN A14

Authors:

C Bellhouse, Jb Golden-Marx, Sp Bamford, Na Hatch, M Kluge, A Ellien, Sl Ahad, P Dimauro, F Durret, Ah Gonzalez, Y Jimenez-Teja, M Montes, M Sereno, E Slezak, M Bolzonella, G Castignani, O Cucciati, G De Lucia, Z Ghaffari, L Moscardini, R Pello, L Pozzetti, T Saifollahi, As Borlaff, N Aghanim, B Altieri, A Amara, S Andreon, C Baccigalupi, M Baldi, S Bardelli, A Basset, P Battaglia, R Bender, D Bonino, E Branchini, M Brescia, A Caillat, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice

Abstract:

The intracluster light (ICL) permeating galaxy clusters is a tracer of the cluster assembly history and potentially a tracer of their dark matter structure. In this work, we explore the capability of the Euclid Wide Survey to detect ICL using HE-band mock images. We simulated clusters across a range of redshifts (0.3-1.8) and halo masses (1013:9-1015:0 M_) using an observationally motivated model of ICL. We identified a 50- 200 kpc circular annulus around the brightest cluster galaxy (BCG) in which the signal-to-noise ratio of the ICL is maximised and used the S/N within this aperture as our figure of merit for ICL detection.We compared three state-of-the-art methods for ICL detection and found that a method that performs simple aperture photometry after high-surface brightness source masking is able to detect ICL with minimal bias for clusters more massive than 1014:2 M_. The S/N of the ICL detection is primarily limited by the redshift of the cluster, which is driven by cosmological dimming rather than the mass of the cluster. Assuming the ICL in each cluster contains 15% of the stellar light, we forecast that Euclid will be able to measure the presence of ICL in up to _80 000 clusters of >1014:2 M_ between z = 0:3 and 1.5 with an S/N > 3. Half of these clusters will reside below z = 0:75, and the majority of those below z = 0:6 will be detected with an S/N > 20. A few thousand clusters at 1:3 < z < 1:5 will have ICL detectable with an S/N > 3. The surface brightness profile of the ICL model is strongly dependent on both the mass of the cluster and the redshift at which it is observed so that the outer ICL is best observed in the most massive clusters of >1014:7 M_. Euclid will detect the ICL at a distance of more than 500 kpc from the BCG, up to z = 0:7, in several hundred of these massive clusters over its large survey volume.
More details from the publisher
More details

Robustness of dark energy phenomenology across different parameterizations

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 034

Authors:

William J Wolf, Carlos García-García, Pedro G Ferreira

Abstract:

The recent evidence for dynamical dark energy from DESI, in combination with other cosmological data, has generated significant interest in understanding the nature of dark energy and its underlying microphysics. However, interpreting these results critically depends on how dark energy is parameterized. This paper examines the robustness of conclusions about the viability of particular kinds of dynamical dark energy models to the choice of parameterization, focusing on four popular two-parameter families: the Chevallier-Polarski-Linder (CPL), Jassal-Bagla-Padmanabhan (JBP), Barboza-Alcaniz (BA), and exponential (EXP) parameterizations. We find that conclusions regarding the viability of minimally and non-minimally coupled quintessence models are independent of the parameterization adopted. We demonstrate this both by mapping these dark energy models into the (w 0, wa ) parameter space defined by these various parameterizations and by showing that all of these parameterizations can equivalently account for the phenomenology predicted by these dark energy models to a high degree of accuracy.
More details from the publisher
Details from ORA

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A2

Authors:

Ms Cropper, A Al-Bahlawan, J Amiaux, S Awan, R Azzollini, K Benson, M Berthe, J Boucher, E Bozzo, C Brockley-Blatt, Gp Candini, C Cara, Ra Chaudery, Re Cole, P Danto, J Denniston, Am Di Giorgio, B Dryer, J-P Dubois, J Endicott, M Farina, E Galli, L Genolet, Jpd Gow, P Guttridge, M Hailey, D Hall, C Harper, H Hoekstra, Ad Holland, B Horeau, D Hu, Re James, A Khalil, R King, T Kitching, R Kohley, C Larcheveque, A Lawrenson, P Liebing, Sj Liu, J Martignac, R Massey, Hj McCracken, L Miller, N Murray, R Nakajima, S-M Niemi, Jw Nightingale, S Paltani

Abstract:

This paper presents the specification, design, and development of the Visible Camera (VIS) on the European Space Agency’s Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg2 sampled at 000 . 1 with an array of 609 Megapixels and a spatial resolution of 000 . 18. It will be used to survey approximately 14 000 deg2 of extragalactic sky to measure the distortion of galaxies in the redshift range z = 0.1–1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes leveraged by Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and the extent to which this has changed with look-back time can be used to constrain the nature of dark energy and theories of gravity. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, specified to reach mAB ≥ 24.5 with a signal-to-noise ratio S/N ≥ 10 in a single broad IE ≃ (r + i + z) band over a six-year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the conception of VIS and describes the instrument design and development, before reporting the prelaunch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than mAB = 25 with S/N ≥ 10 for galaxies with a full width at half maximum of 000 . 3 in a 100 . 3 diameter aperture over the Wide Survey, and mAB ≥ 26.4 for a Deep Survey that will cover more than 50 deg2. The paper also describes how the instrument works with the Euclid telescope and survey, and with the science data processing, to extract the cosmological information.
More details from the publisher
More details

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A3

Authors:

K Jahnke, W Gillard, M Schirmer, A Ealet, T Maciaszek, E Prieto, R Barbier, C Bonoli, L Corcione, S Dusini, F Grupp, F Hormuth, S Ligori, L Martin, G Morgante, C Padilla, R Toledo-Moreo, M Trifoglio, L Valenziano, R Bender, Fj Castander, B Garilli, Pb Lilje, H-W Rix, Mi Andersen, N Auricchio, A Balestra, J-C Barriere, P Battaglia, M Berthe, C Bodendorf, T Boenke, W Bon, A Bonnefoi, A Caillat, V Capobianco, M Carle, R Casas, H Cho, A Costille, F Ducret, S Ferriol, E Franceschi, J-L Gimenez, W Holmes, A Hornstrup, M Jhabvala, R Kohley, B Kubik, R Laureijs

Abstract:

The Near-Infrared Spectrometer and Photometer (NISP) on board the Euclid satellite provides multiband photometry and R â ³ 450 slitless grism spectroscopy in the 950- 2020 nm wavelength range. In this reference article, we illuminate the background of NISP' s functional and calibration requirements, describe the instrument' s integral components, and provide all its key properties. We also sketch the processes needed to understand how NISP operates and is calibrated as well as its technical potentials and limitations. Links to articles providing more details and the technical background are included. The NISP' s 16 HAWAII-2RG (H2RG) detectors with a plate scale of 03.3 pixel-1 deliver a field of view of 0.57 deg2. In photometric mode, NISP reaches a limiting magnitude of ~24.5 AB mag in three photometric exposures of about 100 s in exposure time for point sources and with a S/N of five. For spectroscopy, NISP' s pointsource sensitivity is a signal-to-noise ratio = 3.5 detection of an emission line with flux 2 10-16 erg s-1 cm-2 integrated over two resolution elements of 13.4 in 3-560 s grism exposures at 1.6 μm (redshifted Hα). Our calibration includes on-ground and in-flight characterisation and monitoring of the pixel-based detector baseline, dark current, non-linearity, and sensitivity to guarantee a relative photometric accuracy better than 1.5% and a relative spectrophotometry better than 0.7%. The wavelength calibration must be accurate to 5 or better. The NISP is the state-of-the-art instrument in the near-infrared for all science beyond small areas available from HST and JWST - and it represents an enormous advance from any existing instrumentation due to its combination of field size and high throughput of telescope and instrument. During Euclid' s six-year survey covering 14 000 deg2 of extragalactic sky, NISP will be the backbone in determining distances of more than a billion galaxies. Its near-infrared data will become a rich reference imaging and spectroscopy data set for the coming decades.
More details from the publisher
More details

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A5

Authors:

Fj Castander, P Fosalba, J Stadel, D Potter, J Carretero, P Tallada-Crespí, L Pozzetti, M Bolzonella, Ga Mamon, L Blot, K Hoffmann, M Huertas-Company, P Monaco, Ej Gonzalez, G De Lucia, C Scarlata, M-A Breton, L Linke, C Viglione, S-S Li, Z Zhai, Z Baghkhani, K Pardede, C Neissner, R Teyssier, M Crocce, I Tutusaus, L Miller, G Congedo, A Biviano, M Hirschmann, A Pezzotta, H Aussel, H Hoekstra, T Kitching, Wj Percival, L Guzzo, Y Mellier, Pa Oesch, Raa Bowler, S Bruton, V Allevato, V Gonzalez-Perez, M Manera, S Avila, A Kovács, N Aghanim, B Altieri, A Amara, L Amendola

Abstract:

We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure formation over more than 10 billion years primarily from the combination of weak gravitational lensing and galaxy clustering data. The breadth of Euclid’s data will also foster a wide variety of scientific analyses. The Flagship simulation was developed to provide a realistic approximation to the galaxies that will be observed by Euclid and used in its scientific exploitation. We ran a state-of-the-art N-body simulation with four trillion particles, producing a lightcone on the fly. From the dark matter particles, we produced a catalogue of 16 billion haloes in one octant of the sky in the lightcone up to redshift z = 3. We then populated these haloes with mock galaxies using a halo occupation distribution and abundance-matching approach, calibrating the free parameters of the galaxy mock against observed correlations and other basic galaxy properties. Modelled galaxy properties include luminosity and flux in several bands, redshifts, positions and velocities, spectral energy distributions, shapes and sizes, stellar masses, star formation rates, metallicities, emission line fluxes, and lensing properties. We selected a final sample of 3.4 billion galaxies with a magnitude cut of HE < 26, where we are complete. We have performed a comprehensive set of validation tests to check the similarity to observational data and theoretical models. In particular, our catalogue is able to closely reproduce the main characteristics of the weak lensing and galaxy clustering samples to be used in the mission main cosmological analysis. Moreover, given its depth and completeness, this new galaxy mock also provides the community with a powerful tool for developing a wide range of scientific analyses beyond the Euclid mission.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet