Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Christopher Foot

Professor of Physics

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ultracold quantum matter
  • AION/Magis
Christopher.Foot@physics.ox.ac.uk
Telephone: 01865 (2)72256
Clarendon Laboratory, room 161
  • About
  • Publications

Realising a species-selective double well with multiple-radiofrequency-dressed potentials

Journal of Physics B: Atomic, Molecular and Optical Physics IOP Publishing 53:15 (2020) 155001

Authors:

Aj Barker, S Sunami, D Garrick, A Beregi, K Luksch, E Bentine, Cj Foot

Abstract:

Techniques to manipulate the individual constituents of an ultracold mixture are key to investigating impurity physics. In this work, we confine a mixture of hyperfine ground states of 87Rb atoms in a double-well potential. The potential is produced by dressing the atoms with multiple radiofrequencies. The amplitude and phase of each frequency component of the dressing field are controlled to independently manipulate each species. Furthermore, we verify that our mixture of hyperfine states is collisionally stable, with no observable inelastic loss.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Coherent splitting of two-dimensional Bose gases in magnetic potentials

(2020)

Authors:

Adam J Barker, Shinichi Sunami, David Garrick, Abel Beregi, Kathrin Luksch, Elliot Bentine, Christopher J Foot
More details from the publisher

Realising a species-selective double well with multiple-radiofrequency-dressed potentials

(2020)

Authors:

AJ Barker, S Sunami, D Garrick, A Beregi, K Luksch, E Bentine, CJ Foot
More details from the publisher

AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space

EPJ QUANTUM TECHNOLOGY 7:1 (2020) ARTN 6

Authors:

Yousef Abou El-Neaj, Cristiano Alpigiani, Sana Amairi-Pyka, Henrique Araujo, Antun Balaz, Angelo Bassi, Lars Bathe-Peters, Baptiste Battelier, Aleksandar Belic, Elliot Bentine, Jose Bernabeu, Andrea Bertoldi, Robert Bingham, Diego Blas, Vasiliki Bolpasi, Kai Bongs, Sougato Bose, Philippe Bouyer, Themis Bowcock, William Bowden, Oliver Buchmueller, Clare Burrage, Xavier Calmet, Benjamin Canuel, Laurentiu-Ioan Caramete, Andrew Carroll, Giancarlo Cella, Vassilis Charmandaris, Swapan Chattopadhyay, Xuzong Chen, Maria Luisa Chiofalo, Jonathon Coleman, Joseph Cotter, Yanou Cui, Andrei Derevianko, Albert De Roeck, Goran S Djordjevic, Peter Dornan, Michael Doser, Ioannis Drougkakis, Jacob Dunningham, Ioana Dutan, Sajan Easo, Gedminas Elertas, John Ellis, Mai El Sawy, Farida Fassi, Daniel Felea, Chen-Hao Feng, Robert Flack, Chris Foot, Ivette Fuentes, Naceur Gaaloul, Alexandre Gauguet, Remi Geiger, Valerie Gibson, Gian Giudice, Jon Goldwin, Oleg Grachov, Peter W Graham, Dario Grasso, Maurits Van der Grinten, Mustafa Guendogan, Martin G Haehnelt, Tiffany Harte, Aurelien Hees, Richard Hobson, Jason Hogan, Bodil Holst, Michael Holynski, Mark Kasevich, Bradley J Kavanagh, Wolf Von Klitzing, Tim Kovachy, Benjamin Krikler, Markus Krutzik, Marek Lewicki, Yu-Hung Lien, Miaoyuan Liu, Giuseppe Gaetano Luciano, Alain Magnon, Mohammed Attia Mahmoud, Sarah Malik, Christopher McCabe, Jeremiah Mitchell, Julia Pahl, Debapriya Pal, Saurabh Pandey, Dimitris Papazoglou, Mauro Paternostro, Bjoern Penning, Achim Peters, Marco Prevedelli, Vishnupriya Puthiya-Veettil, John Quenby, Ernst Rasel, Sean Ravenhall, Jack Ringwood, Albert Roura, Dylan Sabulsky, Muhammed Sameed, Ben Sauer, Stefan Alaric Schaffer, Stephan Schiller, Vladimir Schkolnik, Dennis Schlippert, Christian Schubert, Haifa Rejeb Sfar, Armin Shayeghi, Ian Shipsey, Carla Signorini, Yeshpal Singh, Marcelle Soares-Santos, Fiodor Sorrentino, Timothy Sumner, Konstantinos Tassis, Silvia Tentindo, Guglielmo Maria Tino, Jonathan N Tinsley, James Unwin, Tristan Valenzuela, Georgios Vasilakis, Ville Vaskonen, Christian Vogt, Alex Webber-Date, Andre Wenzlawski, Patrick Windpassinger, Marian Woltmann, Efe Yazgan, Ming-Sheng Zhan, Xinhao Zou, Jure Zupan
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Applying machine learning optimization methods to the production of a quantum gas

Machine Learning: Science and Technology IOP Publishing 1:1 (2020) 015007

Authors:

Adam J Barker, Harry Style, Kathrin Luksch, Shinichi Sunami, David Garrick, Felix Hill, Christopher J Foot, Elliot Bentine

Abstract:

We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose–Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (differential evolution), a method based on non-parametric inference (Gaussian process regression) and a gradient-based function approximator (artificial neural network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet