Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Christopher Foot

Professor of Physics

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ultracold quantum matter
  • AION/Magis
Christopher.Foot@physics.ox.ac.uk
Telephone: 01865 (2)72256
Clarendon Laboratory, room 161
  • About
  • Publications

Probing multiple-frequency atom-photon interactions with ultracold atoms

(2018)

Authors:

Kathrin Luksch, Elliot Bentine, Adam J Barker, Shinichi Sunami, Tiffany L Harte, Ben Yuen, Christopher J Foot
More details from the publisher

Two-frequency operation of a Paul trap to optimise confinement of two species of ions

International Journal of Mass Spectrometry Elsevier (2018)

Authors:

Christopher Foot, D Trypogeorgos, E Bentine, A Gardner, M Keller

Abstract:

© 2018 Elsevier B.V. We describe the operation of an electrodynamic ion trap in which the electric quadrupole field oscillates at two frequencies. This mode of operation allows simultaneous tight confinement of ions with extremely different charge-to-mass ratios, e.g., singly ionised atomic ions together with multiply charged nanoparticles. We derive the stability conditions for two-frequency operation from asymptotic properties of the solutions of the Mathieu equation and give a general treatment of the effect of damping on parametric resonances. Two-frequency operation is effective when the two species’ mass ratios and charge ratios are sufficiently large, and further when the frequencies required to optimally trap each species are widely separated. This system resembles two coincident Paul traps, each operating close to a frequency optimised for one of the species, such that both species are tightly confined. This method of operation provides an advantage over single-frequency Paul traps, in which the more weakly confined species forms a sheath around a central core of tightly confined ions. We verify these ideas using numerical simulations and by measuring the parametric heating induced in experiments by the additional driving frequency.
More details from the publisher
Details from ORA
More details

Ultracold atoms in multiple radio-frequency dressed adiabatic potentials

Physical Review A American Physical Society 97:1 (2018) 013616

Authors:

TL Harte, E Bentine, K Luksch, Adam Barker, D Trypogeorgos, B Yuen, CJ Foot

Abstract:

We present the first experimental demonstration of a multiple-radiofrequency dressed potential for the configurable magnetic confinement of ultracold atoms. We load cold \Rb{87} atoms into a double well potential with an adjustable barrier height, formed by three radiofrequencies applied to atoms in a static quadrupole magnetic field. Our multiple-radiofrequency approach gives precise control over the double well characteristics, including the depth of individual wells and the height of the barrier, and enables reliable transfer of atoms between the available trapping geometries. We have characterised the multiple-radiofrequency dressed system using radiofrequency spectroscopy, finding good agreement with the eigenvalues numerically calculated using Floquet theory. This method creates trapping potentials that can be reconfigured by changing the amplitudes, polarizations and frequencies of the applied dressing fields, and easily extended with additional dressing frequencies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Two-frequency operation of a Paul trap to optimise confinement of two species of ions

(2018)

Authors:

CJ Foot, D Trypogeorgos, E Bentine, A Gardner, M Keller
More details from the publisher

Ultracold atoms in multiple-radiofrequency dressed adiabatic potentials

(2017)

Authors:

Tiffany Laura Harte, Elliot Bentine, Kathrin Luksch, Adam James Barker, Dimitris Trypogeorgos, Ben Yuen, Christopher J Foot
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet