Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Christopher Foot

Professor of Physics

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Ultracold quantum matter
  • AION/Magis
Christopher.Foot@physics.ox.ac.uk
Telephone: 01865 (2)72256
Clarendon Laboratory, room 161
  • About
  • Publications

Observation of vortex nucleation in a rotating two-dimensional lattice of bose-einstein condensates

Physical Review Letters 104:5 (2010)

Authors:

RA Williams, S Al-Assam, CJ Foot

Abstract:

We report the observation of vortex nucleation in a rotating optical lattice. A Rb87 Bose-Einstein condensate was loaded into a static two-dimensional lattice and the rotation frequency of the lattice was then increased from zero. We studied how vortex nucleation depended on optical lattice depth and rotation frequency. For deep lattices above the chemical potential of the condensate we observed a linear dependence of the number of vortices created with the rotation frequency, even below the thermodynamic critical frequency required for vortex nucleation. At these lattice depths the system formed an array of Josephson-coupled condensates. The effective magnetic field produced by rotation introduced characteristic relative phases between neighboring condensates, such that vortices were observed upon ramping down the lattice depth and recombining the condensates. © 2010 The American Physical Society.
More details from the publisher
More details
More details

Observation of vortex nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates

(2010)

Authors:

RA Williams, S Al-Assam, CJ Foot
More details from the publisher

Trapping Ultracold Atoms in a Time-Averaged Adiabatic Potential

(2009)

Authors:

M Gildemeister, E Nugent, BE Sherlock, M Kubasik, BT Sheard, CJ Foot
More details from the publisher

Light scattering for thermometry of fermionic atoms in an optical lattice

Physical Review Letters 103:17 (2009)

Authors:

J Ruostekoski, CJ Foot, AB Deb

Abstract:

We propose a method of using off-resonant light scattering to measure the temperature of fermionic atoms tightly confined in a two-dimensional optical-lattice potential. We show that fluctuations of the intensity in the far-field diffraction pattern arising from thermal correlations of the atoms can be accurately detected above the shot noise by collecting photons scattered in a forward direction, with the diffraction maxima blocked. The sensitivity of this method of thermometry is enhanced by an additional harmonic trapping potential. © 2009 The American Physical Society.
More details from the publisher

Light scattering for thermometry of fermionic atoms in an optical lattice.

Phys Rev Lett 103:17 (2009) 170404

Authors:

J Ruostekoski, CJ Foot, AB Deb

Abstract:

We propose a method of using off-resonant light scattering to measure the temperature of fermionic atoms tightly confined in a two-dimensional optical-lattice potential. We show that fluctuations of the intensity in the far-field diffraction pattern arising from thermal correlations of the atoms can be accurately detected above the shot noise by collecting photons scattered in a forward direction, with the diffraction maxima blocked. The sensitivity of this method of thermometry is enhanced by an additional harmonic trapping potential.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet