Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Paul Goddard

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Paul.Goddard@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Dimensionality selection in a molecule-based magnet.

Phys Rev Lett 108:7 (2012) 077208

Authors:

Paul A Goddard, Jamie L Manson, John Singleton, Isabel Franke, Tom Lancaster, Andrew J Steele, Stephen J Blundell, Christopher Baines, Francis L Pratt, Ross D McDonald, Oscar E Ayala-Valenzuela, Jordan F Corbey, Heather I Southerland, Pinaki Sengupta, John A Schlueter

Abstract:

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.
More details from the publisher
More details

Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator.

Rev Sci Instrum 82:11 (2011) 113902

Authors:

S Ghannadzadeh, M Coak, I Franke, PA Goddard, J Singleton, JL Manson

Abstract:

We present a novel susceptometer with a particularly small spatial footprint and no moving parts. The susceptometer is suitable for use in systems with limited space where magnetic measurements may not have been previously possible, such as in pressure cells and rotators, as well as in extremely high pulsed fields. The susceptometer is based on the proximity detector oscillator, which has a broad dynamic resonant frequency range and has so far been used predominantly for transport measurements. We show that for insulating samples, the resonance frequency behavior as a function of field consists of a magnetoresistive and an inductive component, originating, respectively, from the sensor coil and the sample. The response of the coil is modeled, and upon subtraction of the magnetoresistive component the dynamic magnetic susceptibility and magnetization can be extracted. We successfully measure the magnetization of the organic molecular magnets Cu(H(2)O)(5)(VOF(4))(H(2)O) and [Cu(HF(2))(pyz)(2)]BF(4) in pulsed magnetic fields and by comparing the results to that from a traditional extraction susceptometer confirm that the new system can be used to measure and observe magnetic susceptibilities and phase transitions.
More details from the publisher
More details

Low-moment magnetism in the double perovskites Ba2MOsO 6 (M=Li,Na)

Physical Review B - Condensed Matter and Materials Physics 84:14 (2011)

Authors:

AJ Steele, PJ Baker, T Lancaster, FL Pratt, I Franke, S Ghannadzadeh, PA Goddard, W Hayes, D Prabhakaran, SJ Blundell

Abstract:

The magnetic ground states of the isostructural double perovskites Ba 2NaOsO6 and Ba2LiOsO6 are investigated with muon-spin relaxation. In Ba2NaOsO6 long-range magnetic order is detected via the onset of a spontaneous muon-spin precession signal below Tc=7.2±0.2K, while in Ba 2LiOsO6 a static but spatially disordered internal field is found below 8 K. A probabilistic argument is used to show from the observed precession frequencies that the magnetic ground state in Ba 2NaOsO6 is most likely to be low-moment (≈0.2μB) ferromagnetism and not canted antiferromagnetism. Ba2LiOsO6 is antiferromagnetic and we find a spin-flop transition at 5.5T. A reduced osmium moment is common to both compounds, probably arising from a combination of spin-orbit coupling and frustration. © 2011 American Physical Society.
More details from the publisher
More details

Structural, electronic, and magnetic properties of quasi-1D quantum magnets [Ni(HF2)(pyz)2]X (pyz = pyrazine; X = PF6(-), SbF6(-)) exhibiting Ni-FHF-Ni and Ni-pyz-Ni spin interactions.

Inorg Chem 50:13 (2011) 5990-6009

Authors:

Jamie L Manson, Saul H Lapidus, Peter W Stephens, Peter K Peterson, Kimberly E Carreiro, Heather I Southerland, Tom Lancaster, Stephen J Blundell, Andrew J Steele, Paul A Goddard, Francis L Pratt, John Singleton, Yoshimitsu Kohama, Ross D McDonald, Rico E Del Sesto, Nickolaus A Smith, Jesper Bendix, Sergei A Zvyagin, Jinhee Kang, Changhoon Lee, Myung-Hwan Whangbo, Vivien S Zapf, Alex Plonczak

Abstract:

[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and β = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via μ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (∼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(⊥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(⊥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.
More details from the publisher
More details

A chiral ferromagnetic molecular metal.

J Am Chem Soc 132:27 (2010) 9271-9273

Authors:

José R Galán-Mascarós, Eugenio Coronado, Paul A Goddard, John Singleton, Amalia I Coldea, John D Wallis, Simon J Coles, Antonio Alberola

Abstract:

The first molecular material with the coexistence of ferromagnetism, metal-like conductivity, and chirality has been prepared using an organic/inorganic approach. In this case, a two-dimensional packing of chiral organic radical cations (responsible for both the electrical conductivity and optical activity) was assembled with a layered bimetallic oxalate-based anionic network (responsible for the magnetic properties). Shubnikov-de Haas oscillations confirmed the presence of a Fermi surface even when the transport properties suggested "insulating"-type behavior at very low temperatures.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet