Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Paul Goddard

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Paul.Goddard@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Structural, electronic, and magnetic properties of quasi-1D quantum magnets [Ni(HF2)(pyz)2]X (pyz = pyrazine; X = PF6(-), SbF6(-)) exhibiting Ni-FHF-Ni and Ni-pyz-Ni spin interactions.

Inorg Chem 50:13 (2011) 5990-6009

Authors:

Jamie L Manson, Saul H Lapidus, Peter W Stephens, Peter K Peterson, Kimberly E Carreiro, Heather I Southerland, Tom Lancaster, Stephen J Blundell, Andrew J Steele, Paul A Goddard, Francis L Pratt, John Singleton, Yoshimitsu Kohama, Ross D McDonald, Rico E Del Sesto, Nickolaus A Smith, Jesper Bendix, Sergei A Zvyagin, Jinhee Kang, Changhoon Lee, Myung-Hwan Whangbo, Vivien S Zapf, Alex Plonczak

Abstract:

[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and β = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via μ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (∼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(⊥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(⊥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.
More details from the publisher
More details

A chiral ferromagnetic molecular metal.

J Am Chem Soc 132:27 (2010) 9271-9273

Authors:

José R Galán-Mascarós, Eugenio Coronado, Paul A Goddard, John Singleton, Amalia I Coldea, John D Wallis, Simon J Coles, Antonio Alberola

Abstract:

The first molecular material with the coexistence of ferromagnetism, metal-like conductivity, and chirality has been prepared using an organic/inorganic approach. In this case, a two-dimensional packing of chiral organic radical cations (responsible for both the electrical conductivity and optical activity) was assembled with a layered bimetallic oxalate-based anionic network (responsible for the magnetic properties). Shubnikov-de Haas oscillations confirmed the presence of a Fermi surface even when the transport properties suggested "insulating"-type behavior at very low temperatures.
More details from the publisher
More details

Compensated electron and hole pockets in an underdoped high- Tc superconductor

Physical Review B - Condensed Matter and Materials Physics 81:21 (2010)

Authors:

SE Sebastian, N Harrison, PA Goddard, MM Altarawneh, CH Mielke, R Liang, DA Bonn, WN Hardy, OK Andersen, GG Lonzarich

Abstract:

We report quantum oscillations in the underdoped high-temperature superconductor YBa2 Cu3 O6+x over a wide range in magnetic field 28≤ μ0 H≤85 T corresponding to ≈12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian [Nature (London) 454, 200 (2008)10.1038/nature07095], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at ≈535 T to be clearly resolved into three separate peaks at ≈460, ≈532, and ≈602 T, in reasonable agreement with the reported frequencies of Audouard [Phys. Rev. Lett. 103, 157003 (2009)10.1103/PhysRevLett.103.157003]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted α) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted γ). On comparison with band structure, the d -wave symmetry of the interlayer dispersion locates the minimally corrugated α pocket at the "nodal" point knodal = (π/2,π/2), and the significantly corrugated γ pocket at the "antinodal" point kantinodal = (π,0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking-a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (α) pocket corresponding to holes, with the weaker antinodal (γ) pocket corresponding to electrons-likely responsible for the negative Hall coefficient reported by LeBoeuf [Nature (London) 450, 533 (2007)10.1038/nature06332]. Given the similarity in α and γ pocket volumes, their opposite carrier type and the previous report of a diverging effective mass in Sebastian [Proc. Nat. Am. Soc. 107, 6175 (2010)10.1073/pnas.0913711107], we discuss the possibility of a secondary Fermi surface instability at low dopings of the excitonic insulator type, associated with the metal-insulator quantum critical point. Its potential involvement in the enhancement of superconducting transition temperatures is also discussed. © 2010 The American Physical Society.
More details from the publisher
More details

Magnetic breakdown and angle-dependent magnetoresistance oscillations

Physica B: Condensed Matter 405:11 SUPPL. (2010)

Authors:

SJ Blundell, A Nowojewski, PA Goddard

Abstract:

We describe how the presence of magnetic breakdown affects the appearance of angle-dependent magnetoresistance oscillations in an organic metal. The model takes account of all the contributions from quasiparticles undergoing both magnetic breakdown and Bragg reflection at each junction and allows extremely efficient simulation of data which can be compared with experimental results on κ-(BEDT-TTF)2Cu(NCS)2. © 2010 Elsevier B.V. All rights reserved.
More details from the publisher

Magnetic quantum oscillations in YBa2Cu3O6.61 and YBa2Cu3O6.69 in fields of up to 85 T: patching the hole in the roof of the superconducting dome.

Phys Rev Lett 104:8 (2010) 086403

Authors:

John Singleton, Clarina de la Cruz, RD McDonald, Shiliang Li, Moaz Altarawneh, Paul Goddard, Isabel Franke, Dwight Rickel, CH Mielke, Xin Yao, Pengcheng Dai

Abstract:

We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p approximately 0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet