Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Paul Goddard

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Paul.Goddard@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Isotope effect in quasi-two-dimensional metal-organic antiferromagnets

Physical Review B - Condensed Matter and Materials Physics 78:5 (2008)

Authors:

PA Goddard, J Singleton, C Maitland, SJ Blundell, T Lancaster, PJ Baker, RD McDonald, S Cox, P Sengupta, JL Manson, KA Funk, JA Schlueter

Abstract:

Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Néel temperature and critical magnetic fields (Δ TN / TN ≈4%; Δ Bc / Bc ≈4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds. © 2008 The American Physical Society.
More details from the publisher
More details

Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magets

New Journal of Physics 10 (2008)

Authors:

PA Goddard, J Singleton, P Sengupta, RD McDonald, T Lancaster, SJ Blundell, FL Pratt, S Cox, N Harrison, JL Manson, HI Southerland, JA Schlueter

Abstract:

Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional (2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J⊥ driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J ⊥ is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Néel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation. We successfully demonstrate the application of this method for nine metalorganic Cu-based quasi-2D magnets with pyrazine (pyz) bridges. Our results suggest the superexchange efficiency of the [Cu(HF2) (pyz) 2]X family of compounds (where X can be ClO4, BF 4, PF6, SbF6 and AsF6) might be controlled by the tilting of the pyz molecule with respect to the 2D planes. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
Details from ORA
More details

Fermi-surface topology and field-dependent effective masses of the filled skutterudite compound PrOs4As12

Physica B: Condensed Matter 403:5-9 (2008) 758-760

Authors:

J Singleton, PC Ho, MB Maple, H Harima, PA Goddard, Z Henkie

Abstract:

We report magnetic-field-orientation dependent de Haas-van Alphen (dHvA) experiments on the filled skutterudites PrOs4As12 and LaOs4As12. The Fermi surfaces of the compounds are very similar and in reasonable agreement with bandstructure calculations for LaOs4As12 on a PrOs4As12 lattice. This suggests that the 4f electrons are essentially localized in the paramagnetic phase of PrOs4As12. Whilst the properties of LaOs4As12 suggest a conventional nonmagnetic Fermi liquid, the effects of direct exchange and electron correlations cause dHvA beat frequencies and field-dependent quasiparticle masses in PrOs4As12. © 2007 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Effect of magnetic breakdown on angle-dependent magnetoresistance in a quasi-two-dimensional metal: An analytically solvable model

Physical Review B - Condensed Matter and Materials Physics 77:1 (2008)

Authors:

A Nowojewski, PA Goddard, SJ Blundell

Abstract:

We have developed an analytical model of angle-dependent magnetoresistance oscillations (AMROs) in a quasi-two-dimensional metal in which magnetic breakdown occurs. The model takes account of all the contributions from quasiparticles undergoing both magnetic breakdown and Bragg reflection at each junction and allows extremely efficient simulation of data which can be compared with recent experimental results on the organic metal κ- (BEDT-TTF)2 Cu (NCS)2. AMROs resulting from both closed and open orbits emerge naturally at low field, and the model enables the transition to breakdown-AMROs with increasing field to be described in detail. © 2008 The American Physical Society.
More details from the publisher
More details

Angle-dependent magnetoresistance oscillations due to magnetic breakdown orbits

Physical Review B - Condensed Matter and Materials Physics 76:5 (2007)

Authors:

AF Bangura, PA Goddard, J Singleton, SW Tozer, AI Coldea, A Ardavan, RD McDonald, SJ Blundell, JA Schlueter

Abstract:

We present experimental evidence for a hitherto unconfirmed type of angle-dependent magnetoresistance oscillation caused by magnetic breakdown. The effect was observed in the organic superconductor κ- (BEDT-TTF)2 Cu (NCS)2 using hydrostatic pressures of up to 9.8 kbar and magnetic fields of up to 33 T. In addition, we show that similar oscillations are revealed in ambient-pressure measurements, provided that the Shubnikov-de Haas oscillations are suppressed either by elevated temperatures or filtering of the data. These results provide a compelling validation of Pippard's semiclassical picture of magnetic breakdown. © 2007 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet