Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Paul Goddard

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Paul.Goddard@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Influence of HF2- geometry on magnetic interactions elucidated from polymorphs of the metal-organic framework [Ni(HF2)(pyz)2]PF6 (pyz = pyrazine).

Dalton Trans 41:24 (2012) 7235-7243

Authors:

Jamie L Manson, Kimberly E Carreiro, Saul H Lapidus, Peter W Stephens, Paul A Goddard, Rico E Del Sesto, Jesper Bendix, Saman Ghannadzadeh, Isabel Franke, John Singleton, Tom Lancaster, Johannes S Möller, Peter J Baker, Francis L Pratt, Stephen J Blundell, Jinhee Kang, Changhoon Lee, Myung-Hwan Whangbo

Abstract:

A tetragonal polymorph of [Ni(HF(2))(pyz)(2)]PF(6) (designated β) is isomorphic to its SbF(6)-congener at 295 K and features linear Ni-FHF-Ni pillars. Enhancements in the spin exchange (J(FHF) = 7.7 K), Néel temperature (T(N) = 7 K), and critical field (B(c) = 24 T) were found relative to monoclinic α-PF(6). DFT reveals that the HF(2)(-) bridges are significantly better mediators of magnetic exchange than pyz (J(pyz)), where J(FHF) ≈ 3J(pyz), thus leading to quasi-1D behavior. Spin density resides on all atoms of the HF(2)(-) bridge whereas N-donor atoms of the pyz ring bear most of the density.
More details from the publisher
More details

Ag(nic)2 (nic = nicotinate): a spin-canted quasi-2D antiferromagnet composed of square-planar S = 1/2 Ag(II) ions.

Inorg Chem 51:4 (2012) 1989-1991

Authors:

Jamie L Manson, Toby J Woods, Saul H Lapidus, Peter W Stephens, Heather I Southerland, Vivien S Zapf, John Singleton, Paul A Goddard, Tom Lancaster, Andrew J Steele, Stephen J Blundell

Abstract:

Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.
More details from the publisher
More details

Dimensionality selection in a molecule-based magnet.

Phys Rev Lett 108:7 (2012) 077208

Authors:

Paul A Goddard, Jamie L Manson, John Singleton, Isabel Franke, Tom Lancaster, Andrew J Steele, Stephen J Blundell, Christopher Baines, Francis L Pratt, Ross D McDonald, Oscar E Ayala-Valenzuela, Jordan F Corbey, Heather I Southerland, Pinaki Sengupta, John A Schlueter

Abstract:

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.
More details from the publisher
More details

Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator.

Rev Sci Instrum 82:11 (2011) 113902

Authors:

S Ghannadzadeh, M Coak, I Franke, PA Goddard, J Singleton, JL Manson

Abstract:

We present a novel susceptometer with a particularly small spatial footprint and no moving parts. The susceptometer is suitable for use in systems with limited space where magnetic measurements may not have been previously possible, such as in pressure cells and rotators, as well as in extremely high pulsed fields. The susceptometer is based on the proximity detector oscillator, which has a broad dynamic resonant frequency range and has so far been used predominantly for transport measurements. We show that for insulating samples, the resonance frequency behavior as a function of field consists of a magnetoresistive and an inductive component, originating, respectively, from the sensor coil and the sample. The response of the coil is modeled, and upon subtraction of the magnetoresistive component the dynamic magnetic susceptibility and magnetization can be extracted. We successfully measure the magnetization of the organic molecular magnets Cu(H(2)O)(5)(VOF(4))(H(2)O) and [Cu(HF(2))(pyz)(2)]BF(4) in pulsed magnetic fields and by comparing the results to that from a traditional extraction susceptometer confirm that the new system can be used to measure and observe magnetic susceptibilities and phase transitions.
More details from the publisher
More details

Low-moment magnetism in the double perovskites Ba2MOsO 6 (M=Li,Na)

Physical Review B - Condensed Matter and Materials Physics 84:14 (2011)

Authors:

AJ Steele, PJ Baker, T Lancaster, FL Pratt, I Franke, S Ghannadzadeh, PA Goddard, W Hayes, D Prabhakaran, SJ Blundell

Abstract:

The magnetic ground states of the isostructural double perovskites Ba 2NaOsO6 and Ba2LiOsO6 are investigated with muon-spin relaxation. In Ba2NaOsO6 long-range magnetic order is detected via the onset of a spontaneous muon-spin precession signal below Tc=7.2±0.2K, while in Ba 2LiOsO6 a static but spatially disordered internal field is found below 8 K. A probabilistic argument is used to show from the observed precession frequencies that the magnetic ground state in Ba 2NaOsO6 is most likely to be low-moment (≈0.2μB) ferromagnetism and not canted antiferromagnetism. Ba2LiOsO6 is antiferromagnetic and we find a spin-flop transition at 5.5T. A reduced osmium moment is common to both compounds, probably arising from a combination of spin-orbit coupling and frustration. © 2011 American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet