An online data analysis framework for small-scale physics experiments
Abstract:
A robust and flexible architecture capable of providing real-time analysis on diagnostic data is of crucial importance to physics experiments. In this paper, we present such an online framework, used in June 2025 as part of the HRMT-68 experiment, performed at the HiRadMat facility at CERN, using the Super Proton Synchrotron (SPS) beam line. HRMT-68 was a fixed-target laboratory astrophysics experiment aiming to identify plasma instabilities generated by a relativistic electron-positron beam during traversal of an argon plasma. This framework was essential for experimental data acquisition and analysis, and can be adapted for a broad range of similar-scale experiments with a variety of experimental diagnostics, even those without a standard direct network communication interface. The developed framework’s customizable design enabled us to rapidly observe and extract emergent features from a diverse range of diagnostic data. Simultaneously, its modularity allowed for a quick introduction of new diagnostic devices and the modification of our analysis as features of interest were identified. As a result, we were able to effectively diagnose equipment malfunction, and infer the beam’s response to varying bunch duration, beam intensity, and the plasma state without resorting to offline analysis, at which time adjustment or improvement would have been impossible. We present the features of this agile framework, whose codebase we have made publicly available so that it may be adapted for future experiments with minimal modification.Emission of pairs of Minkowski photons through the lens of the Unruh effect
Steady state rotational dynamics of a weakly ionised hydrogen plasma under cross-field configuration
Abstract:
We study a novel device for generating a high speed rotating plasma. The device weakly ionises and accelerates a hydrogen gas in a co-axial cylindrical chamber via the perpendicular configuration of electrodes with a magnetic field generated by a superconducting magnetic. It has been hypothesised that extreme velocities and plasma particle compression could be achieved under this configuration1 . This work develops a rigorous theoretical model of the bulk plasma dynamics under steady state centrifugal operation. By exploiting the axisymmetry of the system, and from application of problem-specific governing assumptions, a steady state 1D model for the rotational dynamics of the bulk plasma is derived. From here, we present fully analytical solutions for the radial profiles of the MHD model: [azimuthal velocity, particle densities, pressure] and a semi-analytical solution for electric potential. Tables of selfconsistent plasma parameters are computed to provide a comprehensive characterisation of the bulk plasma state. The model is able to determine the peak velocities and plasma compression, and permits parametric studies to elucidate the complex and non-linear relationships between operational device settings and the achieved steady state plasma state condition. The new theoretical solutions therefore provide necessary insights into the viability of the novel device for high energy-density plasma applications.Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.Proposal to use laser-accelerated electrons to probe the axion-electron coupling
Abstract:
The axion is a hypothetical particle associated with a possible solution to the strong CP problem and is a leading candidate for dark matter. In this paper we investigate the emission of axions by accelerated electrons. We find the emission probability and energy within the WKB approximation for an electron accelerated by an electromagnetic field. As an application, we estimate the number of axions produced by electrons accelerated using two counter-propagating high-intensity lasers and discuss how they would be converted to photons to be detected. We find that, under realistic experimental conditions, competitive model-independent bounds on the coupling between the axion and the electron could be achieved in such an experiment.