Theory of x-ray photon correlation spectroscopy for multiscale flows
Physical Review Research American Physical Society (APS) (2025)
Modeling of warm dense hydrogen via explicit real-time electron dynamics: Electron transport properties
Physical Review E American Physical Society (APS) 111:4 (2025) 045208
Bounds on Heavy Axions with an X-Ray Free Electron Laser
Physical Review Letters American Physical Society (APS) 134:5 (2025) 55001
Abstract:
<jats:p>We present new exclusion bounds obtained at the European X-Ray Free Electron Laser facility (EuXFEL) on axionlike particles in the mass range <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mo>−</a:mo><a:mn>3</a:mn></a:mrow></a:msup><a:mtext> </a:mtext><a:mtext> </a:mtext><a:mrow><a:mi>eV</a:mi></a:mrow><a:mo>≲</a:mo><a:msub><a:mrow><a:mi>m</a:mi></a:mrow><a:mrow><a:mi>a</a:mi></a:mrow></a:msub><a:mo>≲</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>4</a:mn></a:mrow></a:msup><a:mtext> </a:mtext><a:mtext> </a:mtext><a:mi>eV</a:mi></a:mrow></a:math>. Our experiment exploits the Primakoff effect via which photons can, in the presence of a strong external electric field, decay into axions, which then convert back into photons after passing through an opaque wall. While similar searches have been performed previously at a third-generation synchrotron [Yamaji , ], our work demonstrates improved sensitivity, exploiting the higher brightness of x-rays at EuXFEL.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>Ionic structure, liquid-liquid phase transitions, x-ray diffraction, and x-ray Thomson scattering in shock-compressed liquid silicon in the 100-200 GPa regime
Physical Review E American Physical Society 111:1 (2025) 015205
Abstract:
Recent cutting-edge experiments have provided in situ structure characterization and measurements of the pressure (P), density (¯ρ) and temperature (T) of shock compressed silicon in the 100 GPa range of pressures and up to ∼10,000K. We present first-principles calculations in this P, T, ρ¯ regime to reveal a plethora of novel liquid-liquid phase transitions (LPTs) identifiable via discontinuities in the pressure and the compressibility. Evidence for the presence of a highly-correlated liquid (CL) phase, as well as a normal-liquid (NL) phase at the LPTs is presented by a detailed study of one LPT. The LPTs make the interpretation of these experiments more challenging. The LPTs preserve the short-ranged ionic structure of the fluid by collective adjustments of many distant atoms when subject to compression and heating, with minimal change in the ion-ion pair-distribution functions, and in transport properties such as the electrical and thermal conductivities σ and κ. We match the experimental X-Ray Thomson scattering and X-ray diffraction data theoretically, and provide pressure isotherms, ionization data and compressibilities that support the above picture of liquid silicon as a highly complex LPT-driven “glassy” metallic liquid. These novel results are relevant to materials research, studies of planetary interiors, high-energy-density physics, and in laser-fusion studies.Efficient micromirror confinement of sub-teraelectronvolt cosmic rays in galaxy clusters
Nature Astronomy Nature Research 9:3 (2025) 438-448