Modeling partially-ionized dense plasma using wavepacket molecular dynamics
(2025)
Measurement of turbulent velocity and bounds for thermal diffusivity in laser shock compressed foams by X-ray photon correlation spectroscopy
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 112 (2025) 045218
Abstract:
Experimental benchmarking of transport coefficients under extreme conditions is required for validation of differing theoretical models. To date, measurement of transport properties of dynamically compressed samples remains a challenge with only a limited number of studies able to quantify transport in high pressure and temperature matter. X-ray photon correlation spectroscopy utilizes coherent X-ray sources to measure time correlations of density fluctuations, thus providing measurements of length and time scale dependent transport properties. Here,we present a first-of-a-kind experiment to conduct X-ray photon correlation spectroscopy in laser shock compression experiments. We report measurement of the turbulent velocity in the wake of a laser driven supersonic shock and place an upper bound on thermal diffusivity in a solid density plasma on nanosecond timescales.Proposal to use accelerated electrons to probe the axion-electron coupling
(2025)
Learning heat transport kernels using a nonlocal heat transport theory-informed neural network
Physical Review Research American Physical Society (APS) 7:4 (2025) L042017
Abstract:
<jats:p>We present a data-driven framework for the modeling of nonlocal heat transport in plasmas using a nonlocal theory-informed neural network trained on kinetic particle-in-cell simulations that span both local and nonlocal regimes. The model learns spatio-temporal heat flux kernels directly from simulation data, capturing dynamic transport behaviors beyond the reach of classical formulations. Unlike time-independent kernel models such as Luciani-Mora-Virmont and Schurtz-Nicolaï-Busquet models, our approach yields physically grounded, time-evolving kernels that adapt to varying plasma conditions. The resulting predictions show strong agreement with kinetic benchmarks across regimes. This offers a promising direction for data-driven modeling of nonlocal heat transport and contributes to a deeper understanding of plasma dynamics.</jats:p>QSHS: an axion dark matter resonant search apparatus
New Journal of Physics IOP Publishing 27:10 (2025) 105002