Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Efficient micromirror confinement of sub-teraelectronvolt cosmic rays in galaxy clusters

Nature Astronomy Nature Research 9:3 (2025) 438-448

Authors:

Patrick Reichherzer, Archie Bott, Robert Ewart, Gianluca Gregori, Kempski Philipp, Kunze Matthew, Alexander Schekochihin

Abstract:

Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.
More details from the publisher
Details from ORA
More details

A molecular dynamics framework coupled with smoothed particle hydrodynamics for quantum plasma simulations

University of Oxford (2025)

Authors:

Thomas Campbell, Sam Vinko, Gianluca Gregori

Abstract:

Data used for the generation of the figures
Details from ORA

Investigating the impact of intermediate-mode perturbations on diagnosing plasma conditions in DT cryogenic implosions via synthetic x-ray Thomson scattering

Plasma Physics and Controlled Fusion IOP Publishing 67:1 (2024) 015034

Authors:

Hannah Poole, D Cao, R Epstein, I Golovkin, Vn Goncharov, Sx Hu, M Kasim, Sam Vinko, T Walton, Sp Regan, Gianluca Gregori

Abstract:

The pursuit of inertial confinement fusion ignition target designs requires precise experimental validation of the conditions within imploding capsules, in particular the density and temperature of the compressed shell. Previous work has identified X-ray Thomson scattering (XRTS) as a viable diagnostic tool for inferring the in-flight compressed deuterium-tritium shell conditions during capsule implosions [1]. However, this study focused on one-dimensional simulations, which do not account for the growth of hydrodynamic instabilities. In this work, two-dimensional DRACO simulations incorporating intermediate-mode perturbations up to Legendre mode ℓ = 50 were used to generate synthetic XRTS spectra with the SPECT3D code. The analysis employed Markov-Chain Monte Carlo techniques to infer plasma conditions from these spectra. The results demonstrate that the XRTS diagnostic platform can effectively discern the in-flight compressed shell conditions for targets with varying adiabats, even in the presence of intermediate-mode perturbations. This work underscores the potential of XRTS for realistic inertial confinement fusion experiments, providing a robust method for probing the complex dynamics of fusion implosions.

More details from the publisher
Details from ORA
More details

Dynamical development of strength and stability of asteroid material under 440 GeV proton beam irradiation

(2024)

Authors:

Melanie Bochmann, Karl-Georg Schlesinger, Charles Arrowsmith, Paraskevi Alexaki, Marta Alfonso Poza, Mohamed Ambarki, Emily Andersen, Pablo Bilbao, Robert Bingham, Filipe Cruz, Aboubakr Ebn Rahmoun, Alice Goillot, Jonathan Halliday, Brian Huffman, Eva Kamenicka, Michael Lazzaroni, Eva Los, Jean-Marc Quetsch, Brian Reville, Panagiota Rousiadou, Subir Sarkar, Luis Silva, Pascal Simon, Enrica Soria, Vasiliki Stergiou, Sifei Zhang, Nikolaos Charitonidis, Gianluca Gregori
More details from the publisher

Numerical simulations of laser-driven experiments of ion acceleration in stochastic magnetic fields

Physics of Plasmas American Institute of Physics 31:12 (2024) 122105

Authors:

Kassie Moczulski, Thomas Campbell, Charles Arrowsmith, Archie Bott, Subir Sarkar, Alexander Schekochihin, Gianluca Gregori

Abstract:

We present numerical simulations used to interpret laser-driven plasma experiments at the GSI Helmholtz Centre for Heavy Ion Research. The mechanisms by which non-thermal particles are accelerated, in astrophysical environments e.g., the solar wind, supernova remnants, and gamma ray bursts, is a topic of intense study. When shocks are present the primary acceleration mechanism is believed to be first-order Fermi, which accelerates particles as they cross a shock. Second-order Fermi acceleration can also contribute, utilizing magnetic mirrors for particle energization. Despite this mechanism being less efficient, the ubiquity of magnetized turbulence in the universe necessitates its consideration. Another acceleration mechanism is the lower-hybrid drift instability, arising from gradients of both density and magnetic field, which produce lower-hybrid waves with an electric field which energizes particles as they cross these waves. With the combination of high-powered laser systems and particle accelerators it is possible to study the mechanisms behind cosmic-ray acceleration in the laboratory. In this work, we combine experimental results and high-fidelity threedimensional simulations to estimate the efficiency of ion acceleration in a weakly magnetized interaction region. We validate the FLASH MHD code with experimental results and use OSIRIS particle-in-cell (PIC) code to verify the initial formation of the interaction region, showing good agreement between codes and experimental results. We find that the plasma conditions in the experiment are conducive to the lower-hybrid drift instability, yielding an increase in energy ∆E of ∼ 264 keV for 242 MeV calcium ions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet