Insensitivity of a turbulent laser-plasma dynamo to initial conditions
(2022)
Building high accuracy emulators for scientific simulations with deep neural architecture search.
Mach. Learn. Sci. Technol. 3 (2022) 1
Building high accuracy emulators for scientific simulations with deep neural architecture search
Machine Learning: Science and Technology IOP Science 3:1 (2021) 015013
Abstract:
Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully emulates simulations in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.Neutrino-electron magnetohydrodynamics in an expanding Universe
Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 104:12 (2021) 123013
Abstract:
We derive a new model for neutrino-plasma interactions in an expanding universe that incorporates the collective effects of the neutrinos on the plasma constituents. We start from the kinetic description of a multi-species plasma in the flat Friedmann-Robertson-Walker metric, where the particles are coupled to neutrinos through the charged- and neutral-current forms of the weak interaction. We then derive the fluid equations and specialize our model to (a) the lepton epoch, where we consider a pair electron-positron plasma interacting with electron (anti-)neutrinos, and (b) after the electron-positron annihilation, where we model an electron-proton plasma and take the limit of slow ions and inertia-less electrons to obtain a set of neutrino-electron magnetohydrodynamics (NEMHD) equations. In both models, the dynamics of the plasma is affected by the neutrino motion through a ponderomotive force and, as a result, new terms appear in the induction equation that can act as a source for magnetic field generation in the early universe. A brief discussion on the possible applications of our model is proposed.Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information
SciPost Physics SciPost 11:2021 (2021) 093