Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Insensitivity of a turbulent laser-plasma dynamo to initial conditions

(2022)

Authors:

AFA Bott, L Chen, P Tzeferacos, CAJ Palmer, AR Bell, R Bingham, A Birkel, DH Froula, J Katz, MW Kunz, C-K Li, H-S Park, R Petrasso, JS Ross, B Reville, D Ryu, FH Séguin, TG White, AA Schekochihin, DQ Lamb, G Gregori
Details from ArXiV
More details from the publisher

Building high accuracy emulators for scientific simulations with deep neural architecture search.

Mach. Learn. Sci. Technol. 3 (2022) 1

Authors:

Muhammad Firmansyah Kasim, Duncan Watson-Parris, Lucia Deaconu, Sophy Oliver, Peter W Hatfield, Dustin H Froula, Gianluca Gregori, Matt Jarvis, Samar Khatiwala, Jun Korenaga, Jacob Topp-Mugglestone, Eleonora Viezzer, Sam M Vinko

Building high accuracy emulators for scientific simulations with deep neural architecture search

Machine Learning: Science and Technology IOP Science 3:1 (2021) 015013

Authors:

MF Kasim, D Watson-Parris, L Deaconu, S Oliver, Peter Hatfield, DH Froula, Gianluca Gregori, M Jarvis, Samar Khatiwala, J Korenaga, Jonas Topp-Mugglestone, E Viezzer, Sam Vinko

Abstract:

Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully emulates simulations in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.
More details from the publisher
Details from ORA
More details

Neutrino-electron magnetohydrodynamics in an expanding Universe

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 104:12 (2021) 123013

Authors:

LM Perrone, Gianluca Gregori, B Reville, LO Silva, R Bingham

Abstract:

We derive a new model for neutrino-plasma interactions in an expanding universe that incorporates the collective effects of the neutrinos on the plasma constituents. We start from the kinetic description of a multi-species plasma in the flat Friedmann-Robertson-Walker metric, where the particles are coupled to neutrinos through the charged- and neutral-current forms of the weak interaction. We then derive the fluid equations and specialize our model to (a) the lepton epoch, where we consider a pair electron-positron plasma interacting with electron (anti-)neutrinos, and (b) after the electron-positron annihilation, where we model an electron-proton plasma and take the limit of slow ions and inertia-less electrons to obtain a set of neutrino-electron magnetohydrodynamics (NEMHD) equations. In both models, the dynamics of the plasma is affected by the neutrino motion through a ponderomotive force and, as a result, new terms appear in the induction equation that can act as a source for magnetic field generation in the early universe. A brief discussion on the possible applications of our model is proposed.
More details from the publisher
Details from ORA

Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information

SciPost Physics SciPost 11:2021 (2021) 093

Abstract:

We investigate the two-dimensional motion of relativistic cold electrons in the presence of ‘strictly’ spatially varying magnetic fields satisfying, however, no magnetic monopole condition. We find that the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out when the field is variable and the energy levels of spin-up and spin-down electrons align in an interesting way depending on the nature of change of field. Also the varying magnetic field splits Landau levels of electrons with zero angular momentum from positive angular momentum, unlike the constant field which only can split the levels between positive and negative angular momenta. Exploring Landau quantization in non-uniform magnetic fields is a unique venture on its own and has interdisciplinary implications in the fields ranging from condensed matter to astrophysics to quantum information. As examples, we show magnetized white dwarfs, with varying magnetic fields, involved simultaneously with Lorentz force and Landau quantization affecting the underlying degenerate electron gas, exhibiting a significant violation of the Chandrasekhar mass-limit; and an increase in quantum speed of electrons in the presence of a spatially growing magnetic field.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet