Non-isentropic release of a shocked solid
Physical Review Letters American Physical Society 123:24 (2019) 245501
Abstract:
We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.Molecular dynamics simulations of grain interactions in shock-compressed highly textured columnar nanocrystals
Physical Review Materials American Physical Society 3:8 (2019) 083602
Abstract:
While experimental and computational studies abound demonstrating the diverse range of phenomena caused by grain interactions under quasistatic loading conditions, far less attention has been given to these interactions under the comparatively dramatic conditions of shock compression. The consideration of grain interactions is essential within the context of contemporary shock-compression experiments that exploit the distinctive x-ray diffraction patterns of highly textured (and therefore strongly anisotropic) targets in order to interrogate local structural evolution. We present here a study of grain interaction effects in shock-compressed, body-centered cubic tantalum nanocrystals characterized by a columnar geometry and a strong fiber texture using large-scale molecular dynamics simulations. Our study reveals that contiguous grains deform cooperatively in directions perpendicular to the shock, driven by the gigapascal-scale stress gradients induced over their boundaries by the uniaxial compression, and in so doing are able to reach a state of reduced transverse shear stress. We compare the extent of this relaxation for two different columnar geometries (distinguished by their square or hexagonal cross-sections), and quantify the attendant change in the transverse elastic strains. We further show that cooperative deformation is able to replace ordinary plastic deformation mechanisms at lower shock pressures, and, under certain conditions, activate new mechanisms at higher pressures.Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum
Physical Review Letters American Physical Society 120:26 (2018) 265502
Abstract:
We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37–253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.Diffuse scattering from dynamically compressed single-crystal zirconium following the pressure-induced alpha-to-omega phase transition
Physical Review B: Condensed Matter and Materials Physics American Physical Society
Abstract:
The prototypical α → ω phase transition in zirconium is an ideal test-bed for our understanding of polymorphism under extreme loading conditions. After half a century of study, a consensus had emerged that the transition is realized via one of two distinct displacive mechanisms, depending on the nature of the compression path. However, recent dynamic-compression experiments equipped with in situ diffraction diagnostics performed in the past few years have revealed new transition mechanisms, demonstrating that our understanding of the underlying atomistic dynamics and transition kinetics is in fact far from complete. We present classical molecular dynamics simulations of the α → ω phase transition in single-crystal zirconium shock-compressed along the [0001] axis using a machine-learning-class potential. The transition is predicted to proceed primarily via a modified version of the two-stage Usikov-Zilberstein mechanism, whereby the high-pressure ω-phase heterogeneously nucleates at boundaries between grains of an intermediate β-phase. We further observe the fomentation of atomistic disorder at the junctions between β grains, leading to the formation of highly defective interstitial material between the ω grains. We directly compare synthetic x-ray diffraction patterns generated from our simulations with those obtained using femtosecond diffraction in recent dynamic-compression experiments, and show that the simulations produce the same unique, anisotropic diffuse scattering signal unlike any previously seen from an elemental metal. Our simulations suggest that the diffuse signal arises from a combination of thermal diffuse scattering, nanoparticle-like scattering from residual kinetically stabilized α and β grains, and scattering from interstitial defective structures.Femtosecond temperature measurements of laser-shocked copper deduced from the intensity of the x-ray thermal diffuse scattering
Journal of Applied Physics American Institute of Physics