Femtosecond temperature measurements of laser-shocked copper deduced from the intensity of the x-ray thermal diffuse scattering
(2025)
Diffuse scattering from dynamically compressed single-crystal zirconium following the pressure-induced
α → ω
phase transition
Physical Review B American Physical Society (APS) 110:5 (2024) 054113
Abstract:
Resonant inelastic x-ray scattering in warm-dense Fe compounds beyond the SASE FEL resolution limit
Communications Physics Nature Research 7:1 (2024) 266
Abstract:
Resonant inelastic x-ray scattering (RIXS) is a widely used spectroscopic technique, providing access to the electronic structure and dynamics of atoms, molecules, and solids. However, RIXS requires a narrow bandwidth x-ray probe to achieve high spectral resolution. The challenges in delivering an energetic monochromated beam from an x-ray free electron laser (XFEL) thus limit its use in few-shot experiments, including for the study of high energy density systems. Here we demonstrate that by correlating the measurements of the self-amplified spontaneous emission (SASE) spectrum of an XFEL with the RIXS signal, using a dynamic kernel deconvolution with a neural surrogate, we can achieve electronic structure resolutions substantially higher than those normally afforded by the bandwidth of the incoming x-ray beam. We further show how this technique allows us to discriminate between the valence structures of Fe and Fe2O3, and provides access to temperature measurements as well as M-shell binding energies estimates in warm-dense Fe compounds.Unexpected Observation of Disorder and Multiple Phase-Transition Pathways in Shock-Compressed Zr.
Physical review letters 133:9 (2024) 096101
Abstract:
The response of materials under dynamic compression involves a complex interplay of various deformation mechanisms aimed at relieving shear stresses, yielding a remarkable diversity in material behavior. In this Letter, we utilize femtosecond x-ray diffraction coupled with nanosecond laser compression to reveal an intricate competition between multiple shear-relieving mechanisms within an elemental metal. Our observations in shocked-compressed single-crystal Zr indicate a disorder-mediated shear relaxation at lower pressures. Above the phase-transition pressure, we observe the increasing contribution of structural phase transition in relieving shear stress. We detect not one but three concurrent pathways during the transition from the hcp to a hex-3 structure. These complex dynamics are partially corroborated through multimillion-atom molecular dynamics simulations employing a machine-learned interatomic potential. Our observation of multiple concurrent pathways and disorder during shock compression underscore the far greater intricacies in the dynamic response of metals than previously assumed.Diffuse scattering from dynamically compressed single-crystal zirconium following the pressure-induced $\alpha\to\omega$ phase transition
(2024)