Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Samuel Henry

Detector Development Scientist

Research theme

  • Instrumentation
  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • ATLAS
  • ePIC
Samuel.Henry@physics.ox.ac.uk
Telephone: 01865 (2)73378
Denys Wilkinson Building, room 624
  • About
  • Research
  • Public Engagement
  • Teaching
  • Publications

Status of the CRESST Dark Matter Search

AIP Conference Proceedings AIP Publishing 1185:1 (2009) 631-634

Authors:

J Schmaler, G Angloher, M Bauer, I Bavykina, A Bento, A Brown, C Bucci, C Ciemniak, C Coppi, G Deuter, F von Feilitzsch, D Hauff, S Henry, P Huff, J Imber, S Ingleby, C Isaila, J Jochum, M Kiefer, M Kimmerle, H Kraus, J-C Lanfranchi, RF Lang, M Malek, R McGowan, VB Mikhailik, E Pantic, F Petricca, S Pfister, W Potzel, F Pröbst, S Roth, K Rottler, C Sailer, K Schäffner, S Scholl, W Seidel, L Stodolsky, AJB Tolhurst, I Usherov, W Westphal, Betty Young, Blas Cabrera, Aaron Miller
More details from the publisher
More details

MgWO4-A new crystal scintillator

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608:1 (2009) 107-115

Authors:

FA Danevich, DM Chernyak, AM Dubovik, BV Grinyov, S Henry, H Kraus, VM Kudovbenko, VB Mikhailik, LL Nagornaya, RB Podviyanuk, OG Polischuk, IA Tupitsyna, YY Vostretsov

Abstract:

Magnesium tungstate (MgWO4) crystals of ~1 cm3 volume were obtained for the first time using a flux growth technique. The crystal was subjected to comprehensive characterisation that included room-temperature measurements of the transmittance, X-ray luminescence spectra, afterglow under X-ray excitation, relative photoelectron output, energy resolution, non-proportionality of scintillation response to γ-quanta, response to α-particles, and pulse shape for γ-quanta and α-particles. The light output and decay kinetics of MgWO4 were studied over the temperature range 7-305 K. Under X-ray excitation the crystal exhibits an intense luminescence band peaking at a wavelength of 470 nm; the intensity of afterglow after 20 ms is 0.035%. An energy resolution of 9.1% for 662 keV γ-quanta of 137Cs was measured with a small (≈0.9 g) sample of the MgWO4 crystal. The photoelectron output of the MgWO4 crystal scintillator is 35% that of CdWO4 and 27% that of NaI(Tl). The detector showed pulse-shape discrimination ability in measurements with α-particles and γ-quanta, which enabled us to assess the radioactive contamination of the scintillator. The results of these studies demonstrate the prospect of this material for a variety of scintillation applications, including rare event searches. © 2008 Elsevier B.V.
More details from the publisher
More details

Tungstate and molybdate scintillators to search for dark matter and double beta decay

IEEE Transactions on Nuclear Science 56:4 (2009) 2513-2518

Authors:

LL Nagornaya, FA Danevich, AM Dubovik, BV Grinyov, S Henry, V Kapustyanyk, H Kraus, DV Poda, VM Kudovbenko, VB Mikhailik, M Panasyuk, OG Polischuk, V Rudyk, V Tsybulskyi, IA Tupitsyna, YY Vostretsov

Abstract:

Results are presented on our latest research, aimed at the development and study of oxide scintillation crystals (ZnWO4, ZnMoO4, PbWO4, PbMoO4, and MgWO4) with high scintillation yield and low intrinsic radioactivity. We report on the improvement of these properties for conventional scintillators, as well as on new promising crystals based on metal tungstates and molybdates. The results are discussed in view of applying these materials in cryogenic experiments searching for dark matter and/or neutrinoless double beta decay. © 2006 IEEE.
More details from the publisher
More details

Commissioning run of the CRESST-II dark matter search

Astroparticle Physics 31:4 (2009) 270-276

Authors:

G Angloher, M Bauer, I Bavykina, A Bento, A Brown, C Bucci, C Ciemniak, C Coppi, G Deuter, F von Feilitzsch, D Hauff, S Henry, P Huff, J Imber, S Ingleby, C Isaila, J Jochum, M Kiefer, M Kimmerle, H Kraus, JC Lanfranchi, RF Lang, B Majorovits, M Malek, R McGowan, VB Mikhailik, E Pantic, F Petricca, S Pfister, W Potzel, F Pröbst, W Rau, S Roth, K Rottler, C Sailer, K Schäffner, J Schmaler, S Scholl, W Seidel, L Stodolsky, AJB Tolhurst, I Usherov, W Westphal

Abstract:

The CRESST cryogenic direct dark matter search at Gran Sasso, searching for WIMPs via nuclear recoil, has been upgraded to CRESST-II by several changes and improvements. The upgrade includes a new detector support structure capable of accommodating 33 modules, the associated multichannel readout with 66 SQUID channels, a neutron shield, a calibration source lift, and the installation of a muon veto. We present the results of a commissioning run carried out in 2007. The basic element of CRESST-II is a detector module consisting of a large (∼ 300 g) CaWO4 crystal and a very sensitive smaller (∼ 2 g) light detector to detect the scintillation light from the CaWO4. The large crystal gives an accurate total energy measurement. The light detector permits a determination of the light yield for an event, allowing an effective separation of nuclear recoils from electron-photon backgrounds. Furthermore, information from light-quenching factor studies allows the definition of a region of the energy-light yield plane which corresponds to tungsten recoils. A neutron test is reported which supports the principle of using the light yield to identify the recoiling nucleus. Data obtained with two detector modules for a total exposure of 48 kg-days are presented. Judging by the rate of events in the "all nuclear recoils" acceptance region the apparatus shows a factor ∼10 improvement with respect to previous results, which we attribute principally to the presence of the neutron shield. In the "tungsten recoils" acceptance region three events are found, corresponding to a rate of 0.063 per kg-day. Standard assumptions on the dark matter flux, coherent or spin independent interactions, then yield a limit for WIMP-nucleon scattering of 4.8 × 10- 7 pb, at MWIMP ∼ 50 GeV. © 2009 Elsevier B.V. All rights reserved.
More details from the publisher
More details

ZnWO4 scintillators for cryogenic dark matter experiments

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600:3 (2009) 594-598

Authors:

H Kraus, FA Danevich, S Henry, VV Kobychev, VB Mikhailik, VM Mokina, SS Nagorny, OG Polischuk, VI Tretyak

Abstract:

The scintillation properties of a zinc tungstate crystal, shaped as a hexagonal prism (height 40 mm, diagonal 40 mm) were determined. An energy resolution of 10.7% for the 662 keV γ-line of 137Cs was measured with the scintillator placed in a light collection setup similar to that used by the CRESST dark matter search. The light output and decay kinetics of ZnWO4 were examined over the temperature range 7-300 K and confirmed to be competitive with those of CaWO4. The radioactive contaminations of the ZnWO4 scintillator measured in the Solotvina Underground Laboratory do not exceed 0.1-10 mBq/kg (depending on radionuclide). Our study highlights the excellent feasibility of this ZnWO4 scintillator for a cryogenic dark matter experiment. © 2008 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet