Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Magnetic coupling of ferromagnetic stripe arrays: Analytical model for the α-β -phase coexistence regime of MnAs/GaAs(001)

Physical Review B - Condensed Matter and Materials Physics 78:23 (2008)

Authors:

R Engel-Herbert, T Hesjedal

Abstract:

We investigate the temperature-dependent hysteresis of the stripe state of MnAs thin films on GaAs(001) in the phase coexistence regime. The underlying magnetic domain structure is described employing an analytic model for stripe arrays with perpendicular anisotropy. In the framework of this model the magnetic properties of the MnAs stripe array can be unraveled as a combined effect of magnetostatic coupling of neighboring ferromagnetic stripes and the tendency to form antiparallel magnetic domains within the individual ferromagnetic stripes. The detailed analysis reveals the balance of demagnetization energy and domain-wall energy for the domain structure. It is capable to quantitatively predict the temperature dependency of the coercive field of MnAs thin films on GaAs(001) in the phase coexistence regime. Further, the analytic model allows for an understanding of the unusual magnetic reversal properties as a consequence of the temperature-driven geometrical variations in the stripe array. Here, it is the energy difference of the single and the multidomain states associated with the geometrical variations, which is the driving factor, rather than the temperature dependence of the magnetic properties themselves. Although the stripe array of MnAs thin films can be in an interstripe as well as in an intrastripe coupling state, the magnetization reversal is entirely determined by interstripe coupling. © 2008 The American Physical Society.
More details from the publisher
More details

Comparative study of the influence of the solvent on the catalytic growth of carbon nanotubes

Microelectronic Engineering 85:1 (2008) 156-160

Authors:

R Engel-Herbert, H Pforte, T Hesjedal

Abstract:

The catalytic growth by chemical vapor deposition is a well-established route to single-wall carbon nanotubes (SWNTs). In this process, the choice and preparation of the metal catalyst determines the nanotube growth. The system Fe/Mo is known to yield a large percentage of SWNTs. In order to make use of SWNTs in electronic or electromechanical devices, the patterned growth relies on lithography techniques like photolithography or electron beam lithography. Many standard lithographic processes, i.e. the combination of photoresist and lift-off procedure, are not compatible with Fe/Mo catalyst solutions, resulting in low SWNT yield. We present a systematic study of the influence of the catalyst solvent on the patterned SWNT growth. Most remarkably, the use of water as a solvent is the basis for integrating SWNT with the established processing techniques due to its compatibility with any lithographic process and the simultaneous high SWNT yield. © 2007 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Epitaxial Heusler Alloys on III-V Semiconductors - Chapter in "Handbook of Magnetism and Advanced Magnetic Materials"

John Wiley & Sons, Ltd, 2007

Authors:

Thorsten Hesjedal, Klaus H Ploog

Abstract:

At the basis of future applications of spin electronics are ferromagnetic films that have a Curie temperature above room temperature, a crystal structure that allows for epitaxial growth on common semiconductor surfaces, and a high degree of spin polarization at the Fermi level. A class of ternary compounds, the so‐called Heusler alloys, combine these requirements as they are lattice‐matched to many compound semiconductors, have a compatible crystal structure (face‐centered cubic), and show high Curie temperatures. Moreover, calculations suggested that some Heusler alloys may belong to the magnetic class of half‐metals that is characterized by a 100% spin polarization at the Fermi level. We review the work on epitaxial‐Heusler alloy films on semiconductor surfaces. Special emphasis is laid on molecular‐beam epitaxy (MBE), as this growth method allows for an in situ control of the growth and structure of the material. Taking Co2FeSi on GaAs as an example, the structural and magnetic properties of MBE‐grown samples will be discussed.
More details from the publisher

Micromagnetic properties of epitaxial MnAs films on GaAs surfaces

Physica Status Solidi (C) Current Topics in Solid State Physics 4:5 (2007) 1763-1766

Authors:

T Hesjedal, R Engel-Herbert, DM Schaadt, KH Ploog

Abstract:

We present a systematic study of the micromagnetic properties of MnAs deposited by molecular-beam epitaxy on GaAs(001) and GaAs(111)B surfaces. In epitaxial MnAs films, the strain state in MnAs-on-GaAs(001) (anisotropic) and MnAs-on-GaAs(111)B (isotropic) has a strong influence on the magneto-structural phase transition and thus the micromagnetic properties. The ferromagnetic α and the β phase coexist over a wide temperature range exhibiting self-organized, magnetically coupled nanostructures. Independent of the substrate orientation, magnetic flux-closure domain patterns are formed in the basal plane of MnAs. The spatial distribution of the phases in equilibrium (stripes and quasi-hexagonal islands, respectively) stabilizes various magnetic states, which were found experimentally and confirmed by micromagnetic simulations. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.
More details from the publisher
More details

Growth of carbon nanotubes on GaAs

Materials Letters 61:23-24 (2007) 4631-4634

Authors:

R Engel-Herbert, Y Takagaki, T Hesjedal

Abstract:

Hybrid carbon nanotube-semiconductor systems offer unique properties by combining the advantages of one-dimensional conductors with the broad opportunities of semiconductor technology. Thus, it is desirable to incorporate the nanotube growth in III-V semiconductor systems. We present the directed growth of carbon nanotubes from prepatterned CrNi catalyst structures on GaAs. © 2007 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet