Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Magnetic reversal in a YFe₂ dominated DyFe₂/YFe₂ multilayer film

Applied Physics Letters 101:7 (2012) 072412

Authors:

GBG Stenning, GJ Bowden, SA Gregory, J-ML Beaujour, PAJ de Groot, G van der Laan, LR Shelford, P Bencok, P Steadman, AN Dobrynin, T Hesjedal
More details from the publisher
More details

Electronic structure of Fe and Co magnetic adatoms on Bi 2Te 3 surfaces

Physical Review B - Condensed Matter and Materials Physics 86:8 (2012)

Authors:

LR Shelford, T Hesjedal, L Collins-Mcintyre, SS Dhesi, F MacCherozzi, G Van Der Laan

Abstract:

Magnetic doping of topological insulators (TIs) is a prerequisite for their application as spin-based devices. Using x-ray magnetic circular dichroism (XMCD) we investigate the influence of an ultralow coverage (∼0.5% of a monolayer) of magnetic atoms on a TI substrate. For Fe and Co adatoms on Bi 2Te 3 at ∼1.5 K we find an orbital-to-spin magnetic moment ratio of ∼0.45. The magnetization curve of the Fe atoms recorded by XMCD is in quantitative agreement with a paramagnetic behavior with no indication of long-range magnetic order. The spectral shape of the XMCD indicates that the adatoms are weakly hybridized with the substrate and form narrowband states. The results show that the adatoms are not capable of breaking time-reversal symmetry. © 2012 American Physical Society.
More details from the publisher
More details

Micromagnetic Investigation of the S-State Reconfigurable Logic Element

IEEE Transactions on Magnetics (2012)

Authors:

L Hu, T Hesjedal
More details from the publisher
More details

Magnetic susceptibility of n-type GaAs

Semiconductor Science and Technology IOP 27 (2012) 055018

Authors:

T Hesjedal, U Kretzer, A Ney
More details from the publisher
More details

Methane chemical vapor deposition on transition metal/GaAs samples - A possible route to Haeckelite carbon nanotubes?

Surface and Interface Analysis 44:4 (2012) 456-465

Authors:

MJ Burek, T Hesjedal

Abstract:

We present a systematic study of atmospheric chemical vapor deposition growth of carbon nanotubes (CNTs) on patterned, transition metal/GaAs samples employing methane as the carbon feedstock. Controlled CNT growth was found to occur from the exposed metal-semiconductor interface, rather than from the metal or semiconductor surfaces themselves. A fast sample loading system allowed for a minimization of the exposure to high temperatures, thereby preventing excessive sample damage. The optimum growth temperature for CrNi/GaAs interfaces is 700 °C (at a methane flow rate of 700 sccm). Possible growth scenarios involving the Ni-As-Ga system and its interaction with C is discussed. Raman spectroscopy of the CNTs revealed the presence of pentagon-heptagon defects. Closer analysis of the spectra points towards a mixture of so-called Haeckelite CNTs. © 2011 John Wiley & Sons, Ltd.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • Current page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet