Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
  • About
  • Publications

MeerKAT observations of starburst galaxies and AGNs within the core of XMMXCS J2215.9−1738 at z = 1.46

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:2 (2024) 2842-2859

Authors:

DY Klutse, M Hilton, I Heywood, I Smail, AM Swinbank, K Knowles, SP Sikhosana
More details from the publisher
More details

MeerKAT discovery of a double radio relic and odd radio circle: connecting cluster and galaxy merger shocks

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:3 (2024) 3357-3372

Authors:

Bärbel S Koribalski, Angie Veronica, Klaus Dolag, Thomas H Reiprich, Marcus Brüggen, Ian Heywood, Heinz Andernach, Ralf-Jürgen Dettmar, Matthias Hoeft, Xiaoyuan Zhang, Esra Bulbul, Christian Garrel, Gyula IG Józsa, Jayanne English
More details from the publisher
More details

MIGHTEE polarization early science fields: the deep polarized sky

Monthly Notices of the Royal Astronomical Society Oxford University Press 528:2 (2024) 2511-2522

Authors:

Andrew R Taylor, Srikrishna Sekhar, Lennart Heino, Anna MM Scaife, Jeroen Stil, Micah Bowles, Matt Jarvis, Ian Heywood, Jordan D Collier

Abstract:

The MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) is one of the MeerKAT large survey projects, designed to pathfind SKA key science. MIGHTEE is undertaking deep radio imaging of four well-observed fields (COSMOS, XMM-LSS, ELAIS S1, and CDFS) totaling 20 square degrees to μJy sensitivities. Broad-band imaging observations between 880 and1690 MHz yield total intensity continuum, spectro-polarimetry, and atomic hydrogen spectral imaging. Early science data from MIGHTEE are being released from initial observations of COSMOS and XMM–LSS. This paper describes the spectro-polarimetric observations, the polarization data processing of the MIGHTEE early science fields, and presents polarization data images and catalogues. The catalogues include radio spectral index, redshift information, and Faraday rotation measure synthesis results for 13 267 total intensity radio sources down to a polarized intensity detection limit of ∼20 μJy bm−1. Polarized signals were detected from 324 sources. For the polarized detections, we include a catalogue of Faraday Depth from both Faraday Synthesis and Q, U fitting, as well as total intensity and polarization spectral indices. The distribution of redshift of the total radio sources and detected polarized sources are the same, with median redshifts of 0.86 and 0.82, respectively. Depolarization of the emission at longer-wavelengths is seen to increase with decreasing total-intensity spectral index, implying that depolarization is intrinsic to the radio sources. No evidence is seen for a redshift dependence of the variance of Faraday depth.
More details from the publisher
Details from ORA
More details

The discovery of a z=0.7092 OH megamaser with the MIGHTEE survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 529:4 (2023) 3484-3494

Authors:

Matthew Jarvis, Ian Heywood, Anastasia Ponomareva, Rohan Varadaraj, Imogen Whittam, Hengxing Pan

Abstract:

We present the discovery of the most distant OH megamaser to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of 𝑧 = 0.7092, the system has strong emission in both the 1665 MHz (𝐿 ≈ 2500 L⊙) and 1667 MHz (𝐿 ≈ 4.5×104 L⊙) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity 𝑣 ∼ 330 km s−1 with respect to the systemic velocity. The host galaxy has a stellar mass of 𝑀★ = 2.95 × 1010 M⊙ and a star-formation rate of SFR = 371 M⊙ yr−1 , placing it ∼ 1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultra-luminous infrared galaxy. Alongside the optical imaging data, which exhibits evidence for a tidal tail, this suggests that the OH megamaser arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼ 2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy’s optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies.
More details from the publisher
Details from ORA
More details

Detection of large-scale synchrotron radiation from the molecular envelope of the Sgr B cloud complex at the Galactic centre

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:1 (2023) 1275-1282

Authors:

F Yusef-Zadeh, M Wardle, R Arendt, J Hewitt, Y Hu, A Lazarian, NE Kassim, S Hyman, I Heywood
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet