Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
uv plot

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
github.com/IanHeywood
  • About
  • Galactic Centre Images
  • Publications

MIGHTEE: total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:2 (2021) 2150-2168

Authors:

I Heywood, Mj Jarvis, Cl Hale, Ih Whittam, Hl Bester, B Hugo, Js Kenyon, M Prescott, Om Smirnov, C Tasse, Jm Afonso, Pn Best, Jd Collier, Rp Deane, Bs Frank, Mj Hardcastle, K Knowles, N Maddox, Ej Murphy, I Prandoni, Sm Randriamampandry, Mg Santos, S Sekhar, F Tabatabaei, Ar Taylor, K Thorat

Abstract:

MIGHTEE is a galaxy evolution survey using siltaneous radio continuum, spectropolarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image 20 deg2 over the COSMOS, E-CDFS, ELAIS-S1, and XMM-Newton Large Scale Structure field (XMM-LSS) extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive ltiwavelength data sets from numerous existing and forthcoming observational campaigns. Here, we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg2) and a three-pointing mosaic in XMM-LSS (3.5 deg2). The processing includes the correction of direction-dependent effects, and results in theal noise levels below 2 ${}$Jy beam-1 in both fields, limited in the central regions by classical confusion at 8 arcsec angular resolution, and meeting the survey specifications. We also produce images at 5 arcsec resolution that are 3 times shallower. The resulting image products fo the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9896 and 20 274 radio components in COSMOS and XMM-LSS, respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broad-band radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide-field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.
More details from the publisher
Details from ORA
More details

MIGHTEE: total intensity radio continuum imaging and the COSMOS / XMM-LSS Early Science fields

ArXiv 2110.00347 (2021)

Authors:

I Heywood, MJ Jarvis, CL Hale, IH Whittam, HL Bester, B Hugo, JS Kenyon, M Prescott, OM Smirnov, C Tasse, JM Afonso, PN Best, JD Collier, RP Deane, BS Frank, MJ Hardcastle, K Knowles, N Maddox, EJ Murphy, I Prandoni, SM Randriamampandry, MG Santos, S Sekhar, F Tabatabaei, AR Taylor, K Thorat
Details from ArXiV

MIGHTEE-H I: the baryonic Tully–Fisher relation over the last billion years

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:1 (2021) 1195-1205

Authors:

Anastasia A Ponomareva, Wanga Mulaudzi, Natasha Maddox, Bradley S Frank, Matt J Jarvis, Enrico M Di Teodoro, Marcin Glowacki, Renee C Kraan-Korteweg, Tom A Oosterloo, Elizabeth AK Adams, Hengxing Pan, Isabella Prandoni, Sambatriniaina HA Rajohnson, Francesco Sinigaglia, Nathan J Adams, Ian Heywood, Rebecca AA Bowler, Peter W Hatfield, Jordan D Collier, Srikrishna Sekhar

Abstract:

Using a sample of 67 galaxies from the MeerKAT International GigaHertz Tiered Extragalactic Exploration Survey Early Science data, we study the H i-based baryonic Tully-Fisher relation (bTFr), covering a period of ∼1 billion years (0 ≤ z ≤ 0.081). We consider the bTFr based on two different rotational velocity measures: The width of the global H i profile and Vout, measured as the outermost rotational velocity from the resolved H i rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fitting relation (σ⊥ = 0.07 ± 0.01), comparable to the SPARC sample at z 0. The slopes of the relations are similar and consistent with the z 0 studies (3.66+0.35-0.29 for W50 and 3.47+0.37-0.30 for Vout). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set-up a reference for all future studies of the H i-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The nature of sub-millimetre galaxies I: a comparison of AGN and star-forming galaxy SED fits

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 505:1 (2021) 1509-1529

Authors:

T Shanks, B Ansarinejad, RM Bielby, I Heywood, N Metcalfe, L Wang
More details from the publisher
More details
Details from ArXiV

Multifrequency observations of SGR J1935+2154

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5367-5384

Authors:

M Bailes, CG Bassa, G Bernardi, S Buchner, M Burgay, M Caleb, AJ Cooper, G Desvignes, PJ Groot, I Heywood, F Jankowski, R Karuppusamy, M Kramer, M Malenta, G Naldi, M Pilia, G Pupillo, KM Rajwade, L Spitler, M Surnis, BW Stappers, A Addis, S Bloemen, MC Bezuidenhout, G Bianchi, DJ Champion, W Chen, LN Driessen, M Geyer, K Gourdji, JWT Hessels, VI Kondratiev, M Klein-Wolt, E Körding, R Le Poole, K Liu, ME Lower, AG Lyne, A Magro, V McBride, MB Mickaliger, V Morello, A Parthasarathy, K Paterson, BBP Perera, DLA Pieterse, Z Pleunis, A Possenti, A Rowlinson, M Serylak, G Setti, M Tavani, RAMJ Wijers, S ter Veen, V Venkatraman Krishnan, P Vreeswijk, PA Woudt
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet