Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
uv plot

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
github.com/IanHeywood
  • About
  • Galactic Centre Images
  • Publications

The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ≲ z ≲ 3 Star-forming Galaxies

The Astrophysical Journal American Astronomical Society 910:2 (2021) 106

Authors:

EF Jiménez-Andrade, EJ Murphy, I Heywood, I Smail, K Penner, E Momjian, M Dickinson, L Armus, TJW Lazio
More details from the publisher
More details

The VLA Frontier Fields Survey: Deep, High-resolution Radio Imaging of the MACS Lensing Clusters at 3 and 6 GHz

The Astrophysical Journal American Astronomical Society 910:2 (2021) 105

Authors:

I Heywood, EJ Murphy, EF Jiménez-Andrade, L Armus, WD Cotton, C DeCoursey, M Dickinson, TJW Lazio, E Momjian, K Penner, I Smail, OM Smirnov
More details from the publisher
More details

The black hole transient MAXI J1348-630: evolution of the compact and transient jets during its 2019/2020 outburst

Monthly Notices of the Royal Astronomical Society Oxford University Press 504:1 (2021) 444-468

Authors:

F Carotenuto, S Corbel, E Tremou, Td Russell, A Tzioumis, Robert Fender, Pa Woudt, Sara Motta, Jca Miller-Jones, J Chauhan, Aj Tetarenko, Gr Sivakoff, Ian Heywood, A Horesh, Aj van der Horst, E Koerding, Kunal Mooley

Abstract:

We present the radio and X-ray monitoring campaign of the 2019/2020 outburst of MAXI J1348-630, a new black hole X-ray binary (BH XRB) discovered in 2019 January. We observed MAXI J1348-630 for ∼14 months in the radio band with MeerKAT and the Australia Telescope Compact Array, and in the X-rays with MAXI and Swift/XRT. Throughout the outburst, we detected and tracked the evolution of compact and transient jets. Following the main outburst, the system underwent at least four hard-state-only re-flares, during which compact jets were again detected. For the major outburst, we observed the rise, quenching and reactivation of compact jets, as well as two single-sided discrete ejecta travelling away from the BH, launched ∼2 months apart. These ejecta displayed the highest proper motion (≳100 mas d-1) ever measured for an accreting BH binary. From the jet motion, we constrain the ejecta inclination and speed to be ≤46° and ≥0.69 c, and the opening angle and transverse expansion speed of the first component to be ≤6° and ≤0.05 c. We also infer that the first ejection happened at the hard-to-soft state transition, before a strong radio flare, while the second ejection was launched during a short excursion from the soft to the intermediate state. After travelling with constant speed, the first component underwent a strong deceleration, which was covered with unprecedented detail and suggested that MAXI J1348-630 could be located inside a low-density cavity in the interstellar medium, as already proposed for XTE J1550-564 and H1743-322.
More details from the publisher
Details from ORA
More details

The black hole transient MAXI J1348-630: evolution of the compact and transient jets during its 2019/2020 outburst

(2021)

Authors:

F Carotenuto, S Corbel, E Tremou, TD Russell, A Tzioumis, RP Fender, PA Woudt, SE Motta, JCA Miller-Jones, J Chauhan, AJ Tetarenko, GR Sivakoff, I Heywood, A Horesh, AJ van der Horst, E Koerding, KP Mooley
More details from the publisher
Details from ArXiV

Australian square kilometre array pathfinder: I. system description

Publications of the Astronomical Society of Australia Astronomical Society of Australia 38 (2021) e009

Authors:

Aw Hotan, Jd Bunton, Ap Chippendale, M Whiting, J Tuthill, Va Moss, D McConnell, Sw Amy, Mt Huynh, Jr Allison, Cs Anderson, Kw Bannister, E Bastholm, R Beresford, Dc-J Bock, R Bolton, Jm Chapman, K Chow, Jd Collier, Fr Cooray, Tj Cornwell, Pj Diamond, Pg Edwards, Ij Feain, Tmo Franzen, D George, N Gupta, Ga Hampson, L Harvey-Smith, Db Hayman, I Heywood, C Jacka, Ca Jackson, S Jackson, K Jeganathan, S Johnston, M Kesteven, D Kleiner, Bs Koribalski, K Lee-Waddell, E Lenc, Es Lensson, S Mackay, Ek Mahony, Nm McClure-Griffiths, R McConigley, P Mirtschin, Ak Ng, Rp Norris

Abstract:

In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 deg2 at 800 MHz. As a two-dimensional array of 36x12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and 1800 MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet