All-optical GeV electron bunch generation in a laser-plasma accelerator via truncated-channel injection
(2023)
Stability of the modulator in a plasma-modulated plasma accelerator
Physical Review E American Physical Society 108:1 (2023) 15204
Abstract:
We explore the regime of operation of the modulator stage of a recently proposed laser-plasma accelerator scheme [Phys. Rev. Lett. 127, 184801 (2021)], dubbed the plasma-modulated plasma accelerator (P-MoPA). The P-MoPA scheme offers a potential route to high-repetition-rate, GeV-scale plasma accelerators driven by picosecond-duration laser pulses from, for example, kilohertz thin-disk lasers. The first stage of the P-MoPA scheme is a plasma modulator in which a long, high-energy “drive” pulse is spectrally modulated by copropagating in a plasma channel with the low-amplitude plasma wave driven by a short, low-energy “seed” pulse. The spectrally modulated drive pulse is converted to a train of short pulses, by introducing dispersion, which can resonantly drive a large wakefield in a subsequent accelerator stage with the same on-axis plasma density as the modulator. In this paper we derive the 3D analytic theory for the evolution of the drive pulse in the plasma modulator and show that the spectral modulation is independent of transverse coordinate, which is ideal for compression into a pulse train. We then identify a transverse mode instability (TMI), similar to the TMI observed in optical fiber lasers, which sets limits on the energy of the drive pulse for a given set of laser-plasma parameters. We compare this analytic theory with particle-in-cell (PIC) simulations and find that even higher energy drive pulses can be modulated than those demonstrated in the original proposal.Measurement of the decay of laser-driven linear plasma wakefields
(2023)
Linear colliders based on laser-plasma accelerators
Journal of Instrumentation IOP Publishing 18:6 (2023) T06001
Abstract:
Laser-plasma accelerators are capable of sustaining accelerating fields of 10-100 GeV/m, 100-1000 times that of conventional technology and the highest fields produced by any of the widely researched advanced accelerator concepts. Laser-plasma accelerators also intrinsically accelerate short particle bunches, several orders of magnitude shorter than that of conventional technology, which leads to reductions in beamstrahlung and, hence, savings in the overall power consumption to reach a desired luminosity. These properties make laser-plasma accelerators a promising accelerator technology for a more compact, less expensive high-energy linear collider providing multi-TeV polarized leptons. In this submission to the Snowmass 2021 Accelerator Frontier, we discuss the motivation for a laser-plasma-accelerator-based linear collider, the status of the field, and potential linear collider concepts up to 15 TeV. We outline the research and development path toward a collider based on laser-plasma accelerator technology, and highlight near-term and mid-term applications of this technology on the collider development path. The required experimental facilities to carry out this research are described. We conclude with community recommendations developed during Snowmass.Demonstration of tunability of HOFI waveguides via start-to-end simulations
(2023)