Meter-Scale, Conditioned Hydrodynamic Optical-Field-Ionized Plasma Channels
(2020)
Numerical modelling of chromatic effects on axicon-focused beams used to generate HOFI plasma channels
Journal of Physics: Conference Series IOP Publishing 1596 (2020)
Abstract:
Hydrodynamic optical-field-ionised (HOFI) plasma channels promise a route towards high repetition-rate, metre-scale stages for future laser plasma accelerators. These channels are formed by hydrodynamic expansion of a plasma column produced by optical field ionisation at the focus of a laser, typically from an axicon lens. Since the laser pulses used to generate the initial plasma column are of sub-picosecond duration, chromatic effects in the axicon lens could be important. In this paper we assess these effects using a numerical propagation code. The code is validated using analytical formulae and experimental data. For the parameter range investigated, dispersive effects are found to be of minor importance, reducing the peak on-axis intensity in the focal region by approximately 10%.Guiding of high-intensity laser pulses in 100mm-long hydrodynamic optical-field-ionized plasma channels
(2020)
Nonlinear plasma wavelength scalings in a laser wakefield accelerator
Physical Review E American Physical Society 101:2 (2020) 23209
Abstract:
Laser wakefield acceleration relies on the excitation of a plasma wave due to the ponderomotive force of an intense laser pulse. However, plasma wave trains in the wake of the laser have scarcely been studied directly in experiments. Here we use few-cycle shadowgraphy in conjunction with interferometry to quantify plasma waves excited by the laser within the density range of GeV-scale accelerators, i.e., a few 10(18)cm−3. While analytical models suggest a clear dependency between the nonlinear plasma wavelength and the peak potential a0, our study shows that the analytical models are only accurate for driver strength a 0≲1. Experimental data and systematic particle-in-cell simulations reveal that nonlinear lengthening of the plasma wave train depends not solely on the laser peak intensity but also on the waist of the focal spot.Nonlinear plasma wavelength scalings in a laser wakefield accelerator
(2020)