Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Ti:sapphire laser

Professor Simon Hooker

Professor of Atomic & Laser Physics

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser-plasma accelerator group
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Simon.Hooker@physics.ox.ac.uk
  • About
  • Publications

Linear colliders based on laser-plasma accelerators

Journal of Instrumentation IOP Publishing 18:6 (2023) T06001

Authors:

Cb Schroeder, F Albert, C Benedetti, J Bromage, D Bruhwiler, Ss Bulanov, Em Campbell, Nm Cook, B Cros, Mc Downer, E Esarey, Dh Froula, M Fuchs, Cgr Geddes, Sj Gessner, Aj Gonsalves, Mj Hogan, Sm Hooker, A Huebl, C Jing, C Joshi, K Krushelnick, Wp Leemans, R Lehe, Ar Maier, Hm Milchberg, Wb Mori, K Nakamura, J Osterhoff, Jp Palastro, M Palmer, K Poder, Jg Power, Ba Shadwick, D Terzani, M Thevenet, Agr Thomas, J van Tilborg, M Turner, N Vafaei-Najafabadi, J-L Vay, T Zhou, J Zuegel

Abstract:

Laser-plasma accelerators are capable of sustaining accelerating fields of 10-100 GeV/m, 100-1000 times that of conventional technology and the highest fields produced by any of the widely researched advanced accelerator concepts. Laser-plasma accelerators also intrinsically accelerate short particle bunches, several orders of magnitude shorter than that of conventional technology, which leads to reductions in beamstrahlung and, hence, savings in the overall power consumption to reach a desired luminosity. These properties make laser-plasma accelerators a promising accelerator technology for a more compact, less expensive high-energy linear collider providing multi-TeV polarized leptons. In this submission to the Snowmass 2021 Accelerator Frontier, we discuss the motivation for a laser-plasma-accelerator-based linear collider, the status of the field, and potential linear collider concepts up to 15 TeV. We outline the research and development path toward a collider based on laser-plasma accelerator technology, and highlight near-term and mid-term applications of this technology on the collider development path. The required experimental facilities to carry out this research are described. We conclude with community recommendations developed during Snowmass.
More details from the publisher
Details from ORA
More details

Demonstration of tunability of HOFI waveguides via start-to-end simulations

(2023)

Authors:

SM Mewes, GJ Boyle, A Ferran Pousa, RJ Shalloo, J Osterhoff, C Arran, L Corner, R Walczak, SM Hooker, M Thévenet
More details from the publisher

Stability of the Modulator in a Plasma-Modulated Plasma Accelerator

(2023)

Authors:

Johannes J van de Wetering, Simon M Hooker, Roman Walczak
Details from ArXiV
More details from the publisher

Modulational instability in large-amplitude linear laser wakefields

(2023)

Authors:

Alexander von Boetticher, Roman Walczak, Simon Hooker
Details from ArXiV
More details from the publisher

Modulational instability in large-amplitude linear laser wakefields

Physical Review E American Physical Society 107 (2023) L023201

Authors:

Alexander von Boetticher, Roman Walczak, Simon Hooker

Abstract:

We investigate the growth of ion density perturbations in large-amplitude linear laser wakefields via two-dimensional particle-in-cell simulations. Growth rates and wave numbers are found to be consistent with a longitudinal strong-field modulational instability (SFMI). We examine the transverse dependence of the instability for a Gaussian wakefield envelope and show that growth rates and wavenumbers can be maximised off-axis. On-axis growth rates are found to decrease with increasing ion mass or electron temperature. These results are in close agreement with the dispersion relation of a Langmuir wave with energy density that is large compared to the plasma thermal energy density. The implications for wakefield accelerators, in particular multi-pulse schemes, are discussed.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet