Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Ti:sapphire laser

Professor Simon Hooker

Professor of Atomic & Laser Physics

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser-plasma accelerator group
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Simon.Hooker@physics.ox.ac.uk
  • About
  • Publications

GeV plasma accelerators driven in waveguides

PLASMA PHYS CONTR F 49:12B (2007) B403-B410

Authors:

SM Hooker, E Brunetti, E Esarey, JG Gallacher, CGR Geddes, AJ Gonsalves, DA Jaroszynski, C Kamperidis, S Kneip, K Krushelnick, WP Leemans, SPD Mangles, CD Murphy, B Nagler, Z Najmudin, K Nakamura, PA Norreys, D Panasenko, TP Rowlands-Rees, CB Schroeder, CS Toth, R Trines

Abstract:

During the last few years laser-driven plasma accelerators have been shown to generate quasi-monoenergetic electron beams with energies up to several hundred MeV. Extending the output energy of laser-driven plasma accelerators to the GeV range requires operation at plasma densities an order of magnitude lower, i.e. 10(18) cm(-3), and increasing the distance over which acceleration is maintained from a few millimetres to a few tens of millimetres. One approach for achieving this is to guide the driving laser pulse in the plasma channel formed in a gas-filled capillary discharge waveguide. We present transverse interferometric measurements of the evolution of the plasma channel formed and compare these measurements with models of the capillary discharge. We describe in detail experiments performed at Lawrence Berkeley National Laboratory and at Rutherford Appleton Laboratory in which plasma accelerators were driven within this type of waveguide to generate quasi-monoenergetic electron beams with energies up to I GeV.
More details from the publisher

GeV-scale electron acceleration in a gas-filled capillary discharge waveguide

New Journal of Physics 9 (2007)

Authors:

S Karsch, J Osterhoff, A Popp, TP Rowlands-Rees, Z Major, M Fuchs, B Marx, R Hörlein, K Schmid, L Veisz, S Becker, U Schramm, B Hidding, G Pretzler, D Habs, F Grüner, F Krausz, SM Hooker

Abstract:

We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 1018 and 1019cm-3. Quasi-monoenergetic electron bunches with energies as high as 500MeV have been detected, with features reaching up to 1 GeV, albeit with large shot-to-shot fluctuations. A more stable regime with higher bunch charge (20-45 pC) and less energy (200-300 MeV) could also be observed. The beam divergence and the pointing stability are around or below 1 mrad and 8 mrad, respectively. These findings are consistent with self-injection of electrons into a breaking plasma wave. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Bright quasi-phase-matched soft-X-ray harmonic radiation from argon ions

Physical Review Letters 99:14 (2007)

Authors:

M Zepf, B Dromey, M Landreman, P Foster, SM Hooker

Abstract:

Selective enhancement (>103) of harmonics extending to the water window (∼4nm) generated in an argon gas filled straight bore capillary waveguide is demonstrated. This enhancement is in good agreement with modeling which indicates that multimode quasi-phase-matching is achieved by rapid axial intensity modulations caused by beating between the fundamental and higher-order capillary modes. Substantial pulse energies (>10nJ per pulse per harmonic order) at wavelengths beyond the carbon K edge (∼4.37nm, ∼284eV) up to ∼360eV are observed from argon ions for the first time. © 2007 The American Physical Society.
More details from the publisher
More details
More details

Generation of a train of ultrashort pulses from a compact birefringent crystal array.

Appl Opt 46:22 (2007) 5142-5146

Authors:

B Dromey, M Zepf, M Landreman, K O'keeffe, T Robinson, SM Hooker

Abstract:

A linear array of n calcite crystals is shown to allow the generation of a high contrast (>10:1) train of 2(n) high energy (>100 microJ) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup.
More details from the publisher
More details

Simple technique for generating trains of ultrashort pulses.

Opt Lett 32:15 (2007) 2203-2205

Authors:

T Robinson, K O'Keeffe, M Landreman, SM Hooker, M Zepf, B Dromey

Abstract:

A simple method for generating trains of high-contrast femtosecond pulses is proposed and demonstrated: a linearly polarized, frequency-chirped laser pulse is passed through a multiple-order wave plate and a linear polarizer. It is shown theoretically that this arrangement forms a train of laser pulses, and in experiments the production of a train of approximately 100 pulses, each of 200 fs duration, is demonstrated. In combination with an acousto-optic programmable dispersive filter this technique could be used to generate and control pulse trains with chirped spacing. Pulse trains of this type have widespread applications in ultrafast optics.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet