Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Ti:sapphire laser

Professor Simon Hooker

Professor of Atomic & Laser Physics

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser-plasma accelerator group
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Simon.Hooker@physics.ox.ac.uk
  • About
  • Publications

Laser wakefield simulations towards development of compact particle accelerators

Journal of Physics: Conference Series 78:1 (2007)

Authors:

CGR Geddes, D Bruhwiler, JR Cary, E Cormier-Michel, E Esarey, CB Schroeder, WA Isaacs, N Stinus, P Messmer, A Hakim, K Nakamura, AJ Gonsalves, D Panasenko, GR Plateau, C Toth, B Nagler, J Van Tilborg, T Cowan, SM Hooker, WP Leemans

Abstract:

Laser driven wakefield accelerators produce accelerating fields thousands of times those achievable in conventional radio-frequency accelerators, offering compactness and ultrafast bunches to potentially extend the frontiers of high energy physics and enable laboratory scale ultrafast radiation sources. Realization of this potential requires understanding of accelerator physics to advance beam performance and stability, and particle simulations model the highly nonlinear, kinetic physics required. One-to-one simulations of experiments provide new insight for optimization and development of 100 MeV to GeV and beyond laser accelerator stages, and on production of reproducible and controllable low energy spread beams with improved emittance (focusability) and energy through control of injection. © 2007 IOP Publishing Ltd.
More details from the publisher
Details from ORA
More details

Quasi-phasematching of harmonic generation via multimode beating in waveguides

Optics Express 15:13 (2007) 7894-7900

Authors:

B Dromey, M Zepf, M Landreman, SM Hooker

Abstract:

A new scheme for quasi-phasematching high harmonic generation (HHG) in gases is proposed. In this, the rapid variation of the axial intensity resulting from excitation of more than one mode of a waveguide is used to achieve quasi phasematching. Numerical modeling demonstrates enhancement of the harmonic signal over that achieved for a single coherence length by factors >10 4. © 2007 Optical Society of America.
More details from the publisher
More details
More details

GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator - art. no. 056708

PHYS PLASMAS 14:5 (2007) 56708-56708

Authors:

K Nakamura, B Nagler, C Toth, CGR Geddes, CB Schroeder, E Esarey, WP Leemans, AJ Gonsalves, SM Hooker

Abstract:

Laser wakefield accelerators can produce electric fields of order 10-100 GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser preformed plasma channels. Laser pulses with peak power ranging from 10-40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy up to 1 GeV were obtained by channeling a 40 TW peak power laser pulse. The dependence of the electron beam characteristics on capillary properties, plasma density, and laser parameters are discussed. (C) 2007 American Institute of Physics.
More details from the publisher

Modeling of a square pulsed capillary discharge waveguide for interferometry measurements

Physics of Plasmas 14:2 (2007)

Authors:

BHP Broks, W Van Dijk, JJAW Van Der Mullen, AJ Gonsalves, TP Rowlands-Rees, SM Hooker

Abstract:

Slow pulsed capillary discharges in round capillaries are currently under investigation for use as plasma channel laser waveguides in laser-wakefield acceleration, x-ray lasers, and higher-harmonic generation. In this study, a capillary discharge with a square cross section is presented. The electron density, which determines the laser guiding properties, can be measured by means of transverse interferometry in this device. Using a numerical model of the plasma and the capillary wall, an analysis of the discharge is made. The results predict that the square channel is capable of guiding circular laser pulses. The guiding properties are quite similar to those of a round channel with nearly the same diameter as the channel width. This suggests the results obtained by measuring the square capillary discharge are applicable for round channels as well. It was found that the wall heating was inhomogeneous, which makes the wall more susceptible to ablation. The heating of the wall changes the transverse optical pathlength in the interferometry experiments. © 2007 American Institute of Physics.
More details from the publisher
More details

Bright quasi-phasematched soft x-ray harmonic radiation from Argon ions

(2007)

Authors:

M Zepf, B Dromey, M Landreman, P Foster, SM Hooker
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet