Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Sunny Howard

Graduate Students

Sub department

  • Atomic and Laser Physics
sunny.howard@physics.ox.ac.uk
Clarendon Laboratory, room 244
  • About
  • Publications

Single-shot spatio-temporal vector field measurements of petawatt laser pulses

Nature Photonics Springer Nature (2025)

Authors:

Sunny Howard, Jannik Esslinger, Nils Weiße, Jakob Schroeder, Christoph Eberle, Robin Wang, Stefan Karsch, Peter Norreys, Andreas Döpp

Abstract:

The control of light’s various degrees of freedom underpins modern physics and technology, from quantum optics to telecommunications. Ultraintense lasers represent the pinnacle of this control, concentrating light to extreme intensities at which electrons oscillate at relativistic velocities within a single optical cycle. These extraordinary conditions offer unique opportunities to probe the fundamental aspects of light–matter interactions and develop transformative applications. However, the precise characterization of intense, ultrashort lasers has lagged behind our ability to generate them, creating a bottleneck in advancing laser science and its applications. Here we present the first single-shot vector field measurement technique for intense, ultrashort laser pulses that provides an unprecedented insight into their complete spatiotemporal and polarization structure, including quantified uncertainties. Our method efficiently encodes the full vector field onto a two-dimensional detector by leveraging the inherent properties of these laser pulses, allowing for real-time characterization. We demonstrate its capabilities on systems ranging from high-repetition-rate oscillators to petawatt-class lasers, revealing subtle spatiotemporal couplings and polarization effects. This advancement bridges the gap between theory and experiment in laser physics, providing crucial data for simulations and accelerating the development of novel applications in high-field physics, laser–matter interactions, future energy solutions and beyond.
More details from the publisher
Details from ORA
More details

Gravitational waves from high-power twisted light

Physical Review D American Physical Society 110 (2024) 044023

Authors:

Eduard Atonga, Killian Martineau, Ramy Aboushelbaya, Marko von der Leyen, Sunny Howard, Jordan Lee, Heath Martin, Iustin Ouatu, Robert Paddock, Rusko Ruskov, Robin Timmis, Peter Norreys

Abstract:

Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.
More details from the publisher
Details from ORA
More details

Attosecond and nano-Coulomb electron bunches via the Zero Vector Potential mechanism

Scientific Reports Springer Nature 14:1 (2024) 10805

Authors:

Robin Timmis, Robert Paddock, Iustin Ouatu, Jordan Lee, Sunny Howard, Eduard Atonga, Rusko Ruskov, Hannah Martin, Robin Wang, Ramy Aboushelbaya, Marko von der Leyen, Edward Gumbrell, Peter Norreys

Abstract:

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.
More details from the publisher
Details from ORA
More details
More details

Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies

Plasma Physics and Controlled Fusion IOP Publishing 66:2 (2023) 025005

Authors:

Robert W Paddock, Tat S Li, Eugene Kim, Jordan J Lee, Heath Martin, Rusko T Ruskov, Stephen Hughes, Steven J Rose, Christopher D Murphy, Robbie HH Scott, Robert Bingham, Warren Garbett, Vadim V Elisseev, Brian M Haines, Alex B Zlystra, E Mike Campbell, Cliff A Thomas, Tom Goffrey, Tony D Arber, Ramy Aboushelbaya, Marko W Von der Leyen, Robin HW Wang, Abigail A James, Iustin Ouatu, Robin Timmis, Sunny Howard, Eduard Atonga, Peter A Norreys

Abstract:

Low convergence ratio implosions (where wetted-foam layers are used to limit capsule convergence, achieving improved robustness to instability growth) and auxiliary heating (where electron beams are used to provide collisionless heating of a hotspot) are two promising techniques that are being explored for inertial fusion energy applications. In this paper, a new analytic study is presented to understand and predict the performance of these implosions. Firstly, conventional gain models are adapted to produce gain curves for fixed convergence ratios, which are shown to well-describe previously simulated results. Secondly, auxiliary heating is demonstrated to be well understood and interpreted through the burn-up fraction of the deuterium-tritium fuel, with the gradient of burn-up with respect to burn-averaged temperature shown to provide good qualitative predictions of the effectiveness of this technique for a given implosion. Simulations of auxiliary heating for a range of implosions are presented in support of this and demonstrate that this heating can have significant benefit for high gain implosions, being most effective when the burn-averaged temperature is between 5 and 20 keV.
More details from the publisher
Details from ORA

CoordGate: efficiently computing spatially-varying convolutions in convolutional neural networks

British Machine Vision Association (2023)

Authors:

Sunny Howard, Peter Norreys, Andreas Döpp

Abstract:

Optical imaging systems are inherently limited in their resolution due to the point spread function (PSF), which applies a static, yet spatially-varying, convolution to the image. This degradation can be addressed via Convolutional Neural Networks (CNNs), particularly through deblurring techniques. However, current solutions face certain limitations in efficiently computing spatially-varying convolutions. In this paper we propose CoordGate, a novel lightweight module that uses a multiplicative gate and a coordinate encoding network to enable efficient computation of spatially-varying convolutions in CNNs. CoordGate allows for selective amplification or attenuation of filters based on their spatial position, effectively acting like a locally connected neural network. The effectiveness of the CoordGate solution is demonstrated within the context of U-Nets and applied to the challenging problem of image deblurring. The experimental results show that CoordGate outperforms existing approaches, offering a more robust and spatially aware solution for CNNs in various computer vision applications.
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet