Perovskite/perovskite tandem solar cells in the substrate configuration with potential for bifacial operation
ACS Materials Letters American Chemical Society 4:12 (2022) 2638-2644
Abstract:
Perovskite/perovskite tandem solar cells have recently exceeded the record power conversion efficiency (PCE) of single-junction perovskite solar cells. They are typically built in the superstrate configuration, in which the device is illuminated from the substrate side. This limits the fabrication of the solar cell to transparent substrates, typically glass coated with a transparent conductive oxide (TCO), and adds constraints because the first subcell that is deposited on the substrate must contain the wide-bandgap perovskite. However, devices in the substrate configuration could potentially be fabricated on a large variety of opaque and inexpensive substrates, such as plastic and metal foils. Importantly, in the substrate configuration the narrow-bandgap subcell is deposited first, which allows for more freedom in the device design. In this work, we report perovskite/perovskite tandem solar cells fabricated in the substrate configuration. As the substrate we use TCO-coated glass on which a solution-processed narrow-bandgap perovskite solar cell is deposited. All of the other layers are then processed using vacuum sublimation, starting with the charge recombination layers, then the wide-bandgap perovskite subcell, and finishing with the transparent top TCO electrode. Proof-of-concept tandem solar cells show a maximum PCE of 20%, which is still moderate compared to those of best-in-class devices realized in the superstrate configuration yet higher than those of the corresponding single-junction devices in the substrate configuration. As both the top and bottom electrodes are semitransparent, these devices also have the potential to be used as bifacial tandem solar cells.Operational stability, low light performance, and long-lived transients in mixed-halide perovskite solar cells with a monolayer-based hole extraction layer
Solar Energy Materials and Solar Cells Elsevier 245 (2022) 111885
Materials to Improve the Performance of Sn-Based Perovskite Solar Cells
Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 10-11
Cluster-Geometry-Associated Metal-Metal Bonding in Trimetallic Carbide Clusterfullerenes.
Inorganic chemistry 61:29 (2022) 11277-11283
Abstract:
Geometry configurations of the metallic clusters play a significant role in the involved bonding nature. Herein, we report the crystallographic characterization of unprecedented erbium-based trimetallic clusterfullerenes, namely, Er3C2@Ih(7)-C80, in which the inner Er3C2 cluster presents a lifted bat ray configuration with the C2 unit elevated by ∼1.62 Å above the Er3 plane. Within the plane, the Er···Er distances for Er1···Er2, Er1···Er2A, and Er2···Er2A are 3.4051(15), 3.4051(15), and 3.3178(15) Å, respectively, falling into the range of the metal-metal bonding. Density functional theory calculations unveil the three-center-one-electron Er-Er-Er bond in Er3C2@Ih(7)-C80 with one electron shared by three metals, and thus, its exceptional electronic structure can be expressed as (Er3)8+(C2)2-@C806-. Interestingly, with the further observation on the geometry configurations of the encapsulated clusters in M3C2@C2n (M = Sc, Y, and Lu) series, we find that the lifted bat ray configuration of the inner cluster is explicitly associated with the formation of the bonding interactions between the inner metals. This finding provides insights into the nature of metal-metal bonding and gives guidelines for the design of the single-molecule magnet.An unprecedented C 80 cage that violates the isolated pentagon rule
Inorganic Chemistry Frontiers Royal Society of Chemistry (RSC) 9:10 (2022) 2264-2270