Steering Lu3N clusters in C76-78 cages: cluster configuration dominated by cage transformation.
Nanoscale 14:46 (2022) 17290-17296
Abstract:
While the strong interaction between the internal unit and the fullerene cage inside metallofullerenes is widely acknowledged, how the cage transformation interacts with the cluster configuration remains elusive. For this purpose, we herein synthesized three metallofullerene molecules with an easy-to-compare cluster configuration and cage arrangement, namely Lu3N@Cs(17 490)-C76, Lu3N@C2(22 010)-C78, and Lu3N@D3h(5)-C78. The three lutetium-based nitride clusterfullerenes (NCFs) with small C76-78 carbon cages were synthesized by a modified arc-discharge method and their structures were unambiguously confirmed by X-ray crystallography. Notably, the cage transformation from Cs(17 490)-C76 to C2(22 010)-C78via a simple C2-unit insertion leads to a remarkable configuration change of the encapsulated Lu3N cluster from an unusual asymmetric plane to a common symmetric one. This close correlation between the cluster configuration and cage transformation is further confirmed by the pyramidal Lu3N cluster in Lu3N@D3h(5)-C78 other than the symmetric planar Lu3N unit in Lu3N@C2(22 010)-C78, as a result of an even larger difference in the cage arrangement. Astonishingly, such a cluster shrinkage, accompanied by an increase in the cage size from Cs(17 490)-C76 to D3h(5)-C78, is dramatically opposite to the cluster expansion with cage elongation found in La2C2- or Y2C2-based metallofullerenes.Perovskite/perovskite tandem solar cells in the substrate configuration with potential for bifacial operation
ACS Materials Letters American Chemical Society 4:12 (2022) 2638-2644
Abstract:
Perovskite/perovskite tandem solar cells have recently exceeded the record power conversion efficiency (PCE) of single-junction perovskite solar cells. They are typically built in the superstrate configuration, in which the device is illuminated from the substrate side. This limits the fabrication of the solar cell to transparent substrates, typically glass coated with a transparent conductive oxide (TCO), and adds constraints because the first subcell that is deposited on the substrate must contain the wide-bandgap perovskite. However, devices in the substrate configuration could potentially be fabricated on a large variety of opaque and inexpensive substrates, such as plastic and metal foils. Importantly, in the substrate configuration the narrow-bandgap subcell is deposited first, which allows for more freedom in the device design. In this work, we report perovskite/perovskite tandem solar cells fabricated in the substrate configuration. As the substrate we use TCO-coated glass on which a solution-processed narrow-bandgap perovskite solar cell is deposited. All of the other layers are then processed using vacuum sublimation, starting with the charge recombination layers, then the wide-bandgap perovskite subcell, and finishing with the transparent top TCO electrode. Proof-of-concept tandem solar cells show a maximum PCE of 20%, which is still moderate compared to those of best-in-class devices realized in the superstrate configuration yet higher than those of the corresponding single-junction devices in the substrate configuration. As both the top and bottom electrodes are semitransparent, these devices also have the potential to be used as bifacial tandem solar cells.Operational stability, low light performance, and long-lived transients in mixed-halide perovskite solar cells with a monolayer-based hole extraction layer
Solar Energy Materials and Solar Cells Elsevier 245 (2022) 111885
Materials to Improve the Performance of Sn-Based Perovskite Solar Cells
Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 10-11
Cluster-Geometry-Associated Metal-Metal Bonding in Trimetallic Carbide Clusterfullerenes.
Inorganic chemistry 61:29 (2022) 11277-11283