Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Solid-state physics: supersolid simulations.

Nature 442:7099 (2006) 147-149
More details from the publisher
More details

Probing BEC phase fluctuations with atomic quantum dots

New Journal of Physics 8 (2006)

Authors:

M Bruderer, D Jaksch

Abstract:

We consider the dephasing of two internal states |0〉 and |1〉 of a trapped impurity atom, a so-called atomic quantum dot (AQD), where only state 1〉 couples to a Bose-Einstein condensate (BEC). A direct relation between the dephasing of the internal states of the AQD and the temporal phase fluctuations of the BEC is established. Based on this relation we suggest a scheme to probe BEC phase fluctuations non-destructively via dephasing measurements of the AQD. In particular, the scheme allows to trace the dependence of the phase fluctuations on the trapping geometry of the BEC. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

High-Field Fractional Quantum Hall Effect in Optical Lattices

Physical Review Letters 96 (2006) 180407, 4pp

Authors:

DH Jaksch, R.N. Palmer
More details from the publisher
More details
More details

Robust implementations of quantum repeaters

Physical Review A - Atomic, Molecular, and Optical Physics 73:1 (2006)

Authors:

A Klein, U Dorner, CM Alves, D Jaksch

Abstract:

We show how to efficiently exploit decoherence free subspaces (DFSs), which are immune to collective noise, for realizing quantum repeaters with long-lived quantum memories. Our setup consists of an assembly of simple modules and we show how to implement them in systems of cold, neutral atoms in arrays of dipole traps. We develop methods for realizing robust gate operations on qubits encoded in a DFS using collisional interactions between the atoms. We also give a detailed analysis of the performance and stability of all required gate operations and emphasize that all modules can be realized with current or near future experimental technology. © 2006 The American Physical Society.
More details from the publisher
More details

Simulating high-temperature superconductivity model Hamiltonians with atoms in optical lattices

Physical Review A - Atomic, Molecular, and Optical Physics 73:5 (2006)

Authors:

A Klein, D Jaksch

Abstract:

We investigate the feasibility of simulating different model Hamiltonians used in high-temperature superconductivity. We briefly discuss the most common models and then focus on the simulation of the so-called t-J-U Hamiltonian using ultra-cold atoms in optical lattices. For this purpose, previous simulation schemes to realize the spin interaction term J are extended. We especially overcome the condition of a filling factor of exactly one, which otherwise would restrict the phase of the simulated system to a Mott-insulator. Using ultra-cold atoms in optical lattices allows simulation of the discussed models for a very wide range of parameters. The time needed to simulate the Hamiltonian is estimated and the accuracy of the simulation process is numerically investigated for small systems. © 2006 The American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet