Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Optimal quantum storage of broadband single photons

Conference on Lasers and Electro-Optics Europe - Technical Digest (2007)

Authors:

J Nunn, FC Waldermann, K Surmacz, Z Wang, D Jaksch, IA Walmaley
More details from the publisher

Dynamics, dephasing and clustering of impurity atoms in Bose-Einstein condensates

New Journal of Physics 9 (2007)

Authors:

A Klein, M Bruderer, SR Clark, D Jaksch

Abstract:

We investigate the influence of a Bose-Einstein condensate (BEC) on the properties of immersed impurity atoms, which are trapped in an optical lattice. Assuming a weak coupling of the impurity atoms to the BEC, we derive a quantum master equation (QME) for the lattice system. In the special case of fixed impurities with two internal states the atoms represent a quantum register and the QME reproduces the exact evolution of the qubits. We characterize the qubit dephasing which is caused by the interspecies coupling and show that the effect of sub- and super-decoherence is observable for realistic experimental parameters. Furthermore, the BEC phonons mediate an attractive interaction between the impurities, which has an important impact on their spatial distribution. If the lattice atoms are allowed to move, there occurs a sharp transition with the impurities aggregating in a macroscopic cluster at experimentally achievable temperatures. We also investigate the impact of the BEC on the transport properties of the impurity atoms and show that a crossover from coherent to diffusive behaviour occurs with increasing interaction strength. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Dynamics of vortices in weakly interacting Bose-Einstein condensates

Physical Review A - Atomic, Molecular, and Optical Physics 76:4 (2007)

Authors:

A Klein, D Jaksch, Y Zhang, W Bao

Abstract:

We study the dynamics of vortices in ideal and weakly interacting Bose-Einstein condensates using a Ritz minimization method to solve the two-dimensional Gross-Pitaevskii equation. For different initial vortex configurations we calculate the trajectories of the vortices. We find conditions under which a vortex-antivortex pair annihilates and is created again. For the case of three vortices we show that at certain times two additional vortices may be created, which move through the condensate and annihilate each other again. For a noninteracting condensate this process is periodic, whereas for small interactions the essential features persist, but the periodicity is lost. The results are compared to exact numerical solutions of the Gross-Pitaevskii equation confirming our analytical findings. © 2007 The American Physical Society.
More details from the publisher
More details

Polaron physics in optical lattices

Physical Review A - Atomic, Molecular, and Optical Physics 76:1 (2007)

Authors:

M Bruderer, A Klein, SR Clark, D Jaksch

Abstract:

We investigate the effects of a nearly uniform Bose-Einstein condensate (BEC) on the properties of immersed trapped impurity atoms. Using a weak-coupling expansion in the BEC-impurity interaction strength, we derive a model describing polarons, i.e., impurities dressed by a coherent state of Bogoliubov phonons, and apply it to ultracold bosonic atoms in an optical lattice. We show that, with increasing BEC temperature, the transport properties of the impurities change from coherent to diffusive. Furthermore, stable polaron clusters are formed via a phonon-mediated off-site attraction. © 2007 The American Physical Society.
More details from the publisher
More details

Fast initialization of a high-fidelity quantum register using optical superlattices

New Journal of Physics 9 (2007)

Authors:

B Vaucher, SR Clark, U Dorner, D Jaksch

Abstract:

We propose a method for the fast generation of a quantum register of addressable qubits consisting of ultracold atoms stored in an optical lattice. Starting with a half filled lattice we remove every second lattice barrier by adiabatically switching on a superlattice potential which leads to a long wavelength lattice in the Mott insulator state with unit filling. The larger periodicity of the resulting lattice could make individual addressing of the atoms via an external laser feasible. We develop a Bose-Hubbard-like model for describing the dynamics of cold atoms in a lattice when doubling the lattice periodicity via the addition of a superlattice potential. The dynamics of the transition from a half filled to a commensurately filled lattice is analysed numerically with the help of the time evolving block decimation algorithm and analytically using the Kibble-Zurek theory. We show that the timescale for the whole process, i.e. creating the half filled lattice and subsequent doubling of the lattice periodicity, is significantly faster than adiabatic direct quantum-freezing of a superfluid into a Mott insulator for large lattice periods. Our method therefore provides a high-fidelity quantum register of addressable qubits on a fast timescale. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet