Angular correlation functions of bright Lyman-break galaxies at 3 ≲ z ≲ 5
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1651
Abstract:
The Clustering of Active Galactic Nuclei and Star Forming Galaxies in the LoTSS Deep Fields
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1626
Abstract:
Abstract Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular clustering of star forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z ≲1.5 for faint sources, S144 MHz ≥200 μJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multi-wavelength sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases from $b=0.90^{+0.11}_{-0.10}$ at z ∼0.2 to $b=2.94^{+0.36}_{-0.36}$ at z ∼1.2; faster than the assumed b($z$)∝1/D($z$) models adopted in previous LOFAR cosmology studies (at sensitivities where AGN dominate), but in broad agreement with previous work. We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift evolution with $b=2.33^{+0.28}_{-0.27}$ at z ∼0.7 to $b=2.65^{+0.57}_{-0.55}$ at z ∼1.2, though it is also consistent with the assumed bias evolution model (b($z$)∝1/D($z$)) within the measured uncertainties. For those LERGs which reside in quiescent galaxies (QLERGs), there is weak evidence that they are more biased than the general LERG population and evolve from b=$2.62^{+0.33}_{-0.33}$ at z ∼0.7 to $b=3.08^{+0.85}_{-0.84}$ at z ∼1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses.The dependence of the Type Ia Supernova colour–luminosity relation on their host galaxy properties
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1570
Abstract:
Abstract Using the Dark Energy Survey 5-year sample, we determine the properties of type Ia supernova (SN Ia) host galaxies across a wide multi-wavelength range – from the optical to far-infrared – including data from the Herschel and Spitzer space telescopes. We categorise the SNe Ia into three distinct groups according to the distribution of their host galaxies on the star-formation rate (SFR) – stellar mass (M⋆) plane. Each region comprises host galaxies at distinct stages in their evolutionary pathways: Region 1 – low-mass hosts; Region 2 – high-mass, star-forming hosts and Region 3 – high-mass, passive hosts. We find SNe Ia in host galaxies located in Region 1 have the steepest slope (quantified by β) between their colours and luminosities, with $\beta _{\mathrm{R_1}} = 3.51 \pm 0.16$. This differs at the ∼6σ significance level to SNe Ia in Region 3, which have the shallowest colour–luminosity slope with $\beta _{\mathrm{R_3}} = 2.12 \pm 0.16$. After correcting SNe Ia in each subsample by their respective β, events in Region 3 (high-mass, passive hosts) are 0.07 − 0.12 mag (>3σ) brighter, post-standardisation. We conclude that future cosmological analyses should apply standardisation relations to SNe Ia based upon the region in which the SN host galaxy lies in the SFR–M⋆ plane. Alternatively, cosmological analyses should restrict the SN Ia sample to events whose host galaxies occupy a single region of this plane.Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society (2025) staf1505
Abstract:
Radio continuum emission provides a unique opportunity to study star-formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star-formation to high redshifts, it is crucial that the physical processes which affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [∼(1 + z)4] means that this effect becomes increasingly important at z ≳ 3. Using a sample of ∼200, 000 high-redshift (3 < z < 5) Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to inverse Compton scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that inverse Compton scattering is the most compelling explanation.MIGHTEE-HI: the radial acceleration relation with resolved stellar mass measurements
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2366-2392