Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

The Clustering of Active Galactic Nuclei and Star Forming Galaxies in the LoTSS Deep Fields

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1626

Authors:

CL Hale, PN Best, KJ Duncan, R Kondapally, MJ Jarvis, M Magliocchetti, HJA Röttgering, DJ Schwarz, DJB Smith, J Zheng

Abstract:

Abstract Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular clustering of star forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z ≲1.5 for faint sources, S144 MHz ≥200 μJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multi-wavelength sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases from $b=0.90^{+0.11}_{-0.10}$ at z ∼0.2 to $b=2.94^{+0.36}_{-0.36}$ at z ∼1.2; faster than the assumed b($z$)∝1/D($z$) models adopted in previous LOFAR cosmology studies (at sensitivities where AGN dominate), but in broad agreement with previous work. We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift evolution with $b=2.33^{+0.28}_{-0.27}$ at z ∼0.7 to $b=2.65^{+0.57}_{-0.55}$ at z ∼1.2, though it is also consistent with the assumed bias evolution model (b($z$)∝1/D($z$)) within the measured uncertainties. For those LERGs which reside in quiescent galaxies (QLERGs), there is weak evidence that they are more biased than the general LERG population and evolve from b=$2.62^{+0.33}_{-0.33}$ at z ∼0.7 to $b=3.08^{+0.85}_{-0.84}$ at z ∼1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses.
More details from the publisher

The dependence of the Type Ia Supernova colour–luminosity relation on their host galaxy properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:3 (2025) 2180-2203

Authors:

S Ramaiya, M Vincenzi, MJ Jarvis, P Wiseman, M Sullivan

Abstract:

Using the Dark Energy Survey 5-yr sample, we determine the properties of type Ia supernova (SN Ia) host galaxies across a wide multiwavelength range – from the optical to far-infrared – including data from the Herschel and Spitzer space telescopes. We categorize the SNe Ia into three distinct groups according to the distribution of their host galaxies on the star formation rate (SFR) – stellar mass () plane. Each region comprises host galaxies at distinct stages in their evolutionary pathways: Region 1 – low-mass hosts; Region 2 – high-mass, star-forming hosts and Region 3 – high-mass, passive hosts. We find SNe Ia in host galaxies located in Region 1 have the steepest slope (quantified by ) between their colours and luminosities, with . This differs at the significance level to SNe Ia in Region 3, which have the shallowest colour–luminosity slope with . After correcting SNe Ia in each subsample by their respective , events in Region 3 (high-mass, passive hosts) are mag () brighter, post-standardization. We conclude that future cosmological analyses should apply standardization relations to SNe Ia based upon the region in which the SN host galaxy lies in the SFR– plane. Alternatively, cosmological analyses should restrict the SN Ia sample to events whose host galaxies occupy a single region of this plane.
More details from the publisher
Details from ORA

Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 507-517

Authors:

IH Whittam, MJ Jarvis, Eric J Murphy, NJ Adams, RAA Bowler, A Matthews, RG Varadaraj, CL Hale, I Heywood, K Knowles, L Marchetti, N Seymour, F Tabatabaei, AR Taylor, M Vaccari, A Verma

Abstract:

Radio continuum emission provides a unique opportunity to study star formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star formation to high redshifts, it is crucial that the physical processes that affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [] means that this effect becomes increasingly important at . Using a sample of high-redshift () Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to IC scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that IC scattering is the most compelling explanation.
More details from the publisher
Details from ORA
More details

Hi intensity mapping with the MIGHTEE Survey: first results of the Hi power spectrum

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:1 (2025) 476-493

Authors:

Aishrila Mazumder, Laura Wolz, Zhaoting Chen, Sourabh Paul, Mario G Santos, Matt Jarvis, Junaid Townsend, Srikrishna Sekhar, Russ Taylor

Abstract:

We present the first results of the H i intensity mapping power spectrum analysis with the MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) survey. We use data covering 4 square degrees in the COSMOS field using a frequency range of 962.5–1008.42 MHz, equivalent to H i emission in . The data consist of 15 pointings with a total of 94.2 h on-source. We verify the suitability of the MIGHTEE data for H i intensity mapping by testing for residual systematics across frequency, baselines, and pointings. We also vary the window used for H i signal measurements and find no significant improvement using stringent Fourier mode cuts. We compute the H i power spectrum at scales in autocorrelation as well as cross-correlation between observational scans using power spectrum domain averaging for pointings. We report consistent upper limits of 29.8 mK Mpc from the 2 cross-correlation measurements and 25.82 mK Mpc from autocorrelation at 2 Mpc.The low signal-to-noise ratio in this data potentially limits our ability to identify residual systematics, which will be addressed in the future by incorporating more data in the analysis.
More details from the publisher
Details from ORA
More details

On the relationship between the cosmic web and the alignment of galaxies and AGN jets

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2362-2379

Authors:

S Lyla Jung, IH Whittam, MJ Jarvis, CL Hale, MN Tudorache, T Yasin

Abstract:

The impact of active galactic nuclei (AGNs) on the evolution of galaxies explains the steep decrease in the number density of the most massive galaxies in the Universe. However, the fuelling of the AGN and the efficiency of this feedback largely depend on their environment. We use data from the Low Frequency Array Two-metre Sky Survey Data Release 2 (DR2), the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys, and the Sloan Digital Sky Survey DR12 to make the first study of the orientations of radio jets and their optical counterpart in relation to the cosmic web environment. We find that close to filaments (), galaxies tend to have their optical major axes aligned with the nearest filaments. On the other hand, radio jets, which are generally aligned perpendicularly to the optical major axis of the host galaxy, show more randomized orientations with respect to host galaxies within of filaments. These results support the scenario that massive galaxies in cosmic filaments grow by numerous mergers directed along the orientation of the filaments while experiencing chaotic accretion of gas on to the central black hole. The AGN-driven jets consequently have a strong impact preferentially along the minor axes of dark matter haloes within filaments. We discuss the implications of these results for large-scale radio jet alignments, intrinsic alignments between galaxies, and the azimuthal anisotropy of the distribution of circumgalactic medium and anisotropic quenching.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet