The VLBA CANDELS GOODS-North Survey – I. survey design, processing, data products, and source counts
Monthly Notices of the Royal Astronomical Society Oxford University Press 529:3 (2024) 2428-2442
Abstract:
The past decade has seen significant advances in wide-field cm-wave very long baseline interferometry (VLBI), which is timely given the wide-area, synoptic survey-driven strategy of major facilities across the electromagnetic spectrum. While wide-field VLBI poses significant post-processing challenges that can severely curtail its potential scientific yield, many developments in the km-scale connected-element interferometer sphere are directly applicable to addressing these. Here we present the design, processing, data products, and source counts from a deep (11 μJy beam−1), quasi-uniform sensitivity, contiguous wide-field (160 arcmin2) 1.6 GHz VLBI survey of the CANDELS GOODS-North field. This is one of the best-studied extragalactic fields at milli-arcsecond resolution and, therefore, is well-suited as a comparative study for our Tera-pixel VLBI image. The derived VLBI source counts show consistency with those measured in the COSMOS field, which broadly traces the AGN population detected in arcsecond-scale radio surveys. However, there is a distinctive flattening in the S1.4GHz ∼100–500 μJy flux density range, which suggests a transition in the population of compact faint radio sources, qualitatively consistent with the excess source counts at 15 GHz that is argued to be an unmodelled population of radio cores. This survey approach will assist in deriving robust VLBI source counts and broadening the discovery space for future wide-field VLBI surveys, including VLBI with the Square Kilometre Array, which will include new large field-of-view antennas on the African continent at ≳1000 km baselines. In addition, it may be useful in the design of both monitoring and/or rapidly triggered VLBI transient programmes.MIGHTEE polarization early science fields: the deep polarized sky
Monthly Notices of the Royal Astronomical Society Oxford University Press 528:2 (2024) 2511-2522
Abstract:
The MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) is one of the MeerKAT large survey projects, designed to pathfind SKA key science. MIGHTEE is undertaking deep radio imaging of four well-observed fields (COSMOS, XMM-LSS, ELAIS S1, and CDFS) totaling 20 square degrees to μJy sensitivities. Broad-band imaging observations between 880 and1690 MHz yield total intensity continuum, spectro-polarimetry, and atomic hydrogen spectral imaging. Early science data from MIGHTEE are being released from initial observations of COSMOS and XMM–LSS. This paper describes the spectro-polarimetric observations, the polarization data processing of the MIGHTEE early science fields, and presents polarization data images and catalogues. The catalogues include radio spectral index, redshift information, and Faraday rotation measure synthesis results for 13 267 total intensity radio sources down to a polarized intensity detection limit of ∼20 μJy bm−1. Polarized signals were detected from 324 sources. For the polarized detections, we include a catalogue of Faraday Depth from both Faraday Synthesis and Q, U fitting, as well as total intensity and polarization spectral indices. The distribution of redshift of the total radio sources and detected polarized sources are the same, with median redshifts of 0.86 and 0.82, respectively. Depolarization of the emission at longer-wavelengths is seen to increase with decreasing total-intensity spectral index, implying that depolarization is intrinsic to the radio sources. No evidence is seen for a redshift dependence of the variance of Faraday depth.The discovery of a z=0.7092 OH megamaser with the MIGHTEE survey
Monthly Notices of the Royal Astronomical Society Oxford University Press 529:4 (2023) 3484-3494
Abstract:
We present the discovery of the most distant OH megamaser to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of 𝑧 = 0.7092, the system has strong emission in both the 1665 MHz (𝐿 ≈ 2500 L⊙) and 1667 MHz (𝐿 ≈ 4.5×104 L⊙) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity 𝑣 ∼ 330 km s−1 with respect to the systemic velocity. The host galaxy has a stellar mass of 𝑀★ = 2.95 × 1010 M⊙ and a star-formation rate of SFR = 371 M⊙ yr−1 , placing it ∼ 1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultra-luminous infrared galaxy. Alongside the optical imaging data, which exhibits evidence for a tidal tail, this suggests that the OH megamaser arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼ 2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy’s optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies.The discovery of a z=0.7092 OH megamaser with the MIGHTEE survey
(2023)
Extragalactic magnetism with SOFIA (SALSA Legacy Program). VII. A tomographic view of far-infrared and radio polarimetric observations through MHD simulations of galaxies
(2023)