Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

MIGHTEE: total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:2 (2021) 2150-2168

Authors:

I Heywood, Mj Jarvis, Cl Hale, Ih Whittam, Hl Bester, B Hugo, Js Kenyon, M Prescott, Om Smirnov, C Tasse, Jm Afonso, Pn Best, Jd Collier, Rp Deane, Bs Frank, Mj Hardcastle, K Knowles, N Maddox, Ej Murphy, I Prandoni, Sm Randriamampandry, Mg Santos, S Sekhar, F Tabatabaei, Ar Taylor, K Thorat

Abstract:

MIGHTEE is a galaxy evolution survey using siltaneous radio continuum, spectropolarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image 20 deg2 over the COSMOS, E-CDFS, ELAIS-S1, and XMM-Newton Large Scale Structure field (XMM-LSS) extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive ltiwavelength data sets from numerous existing and forthcoming observational campaigns. Here, we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg2) and a three-pointing mosaic in XMM-LSS (3.5 deg2). The processing includes the correction of direction-dependent effects, and results in theal noise levels below 2 ${}$Jy beam-1 in both fields, limited in the central regions by classical confusion at 8 arcsec angular resolution, and meeting the survey specifications. We also produce images at 5 arcsec resolution that are 3 times shallower. The resulting image products fo the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9896 and 20 274 radio components in COSMOS and XMM-LSS, respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broad-band radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide-field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.
More details from the publisher
Details from ORA
More details

Measuring the baryonic Tully-Fisher relation below the detection threshold

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:2 (2021) 1897-1907

Authors:

Hengxing Pan, Matt J Jarvis, Anastasia A Ponomareva, Mario G Santos, James R Allison, Natasha Maddox, Bradley S Frank

Abstract:

We present a novel 2D flux density model for observed H i emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes H i lines described with either Gaussian or busy function profiles, and H i data cubes with a range of noise and survey areas similar to the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. With prior knowledge of redshifts, stellar masses, and inclinations of spiral galaxies, we find that our model can reconstruct the input baryonic Tully-Fisher parameters (slope and zero-point) most accurately in a relatively broad redshift range from the local Universe to z = 0.3 for all the considered levels of noise and survey areas and up to z = 0.55 for a nominal noise of 90 μJy/channel over 5 deg2. Our model can also determine the MHI - M∗ relation for spiral galaxies beyond the local Universe and account for the detailed shape of the H I emission line, which is crucial for understanding the dynamics of spiral galaxies. Thus, we have developed a Bayesian stacking technique for measuring the baryonic Tully-Fisher relation for galaxies at low stellar and/or H I masses and/or those at high redshift, where the direct detection of H I requires prohibitive exposure times.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

MIGHTEE-H I: the baryonic Tully–Fisher relation over the last billion years

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:1 (2021) 1195-1205

Authors:

Anastasia A Ponomareva, Wanga Mulaudzi, Natasha Maddox, Bradley S Frank, Matt J Jarvis, Enrico M Di Teodoro, Marcin Glowacki, Renee C Kraan-Korteweg, Tom A Oosterloo, Elizabeth AK Adams, Hengxing Pan, Isabella Prandoni, Sambatriniaina HA Rajohnson, Francesco Sinigaglia, Nathan J Adams, Ian Heywood, Rebecca AA Bowler, Peter W Hatfield, Jordan D Collier, Srikrishna Sekhar

Abstract:

Using a sample of 67 galaxies from the MeerKAT International GigaHertz Tiered Extragalactic Exploration Survey Early Science data, we study the H i-based baryonic Tully-Fisher relation (bTFr), covering a period of ∼1 billion years (0 ≤ z ≤ 0.081). We consider the bTFr based on two different rotational velocity measures: The width of the global H i profile and Vout, measured as the outermost rotational velocity from the resolved H i rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fitting relation (σ⊥ = 0.07 ± 0.01), comparable to the SPARC sample at z 0. The slopes of the relations are similar and consistent with the z 0 studies (3.66+0.35-0.29 for W50 and 3.47+0.37-0.30 for Vout). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set-up a reference for all future studies of the H i-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation

Monthly Notices of the Royal Astronomical Society Oxford University Press 507:256 (2021) 2643-2658

Authors:

Fangxia An, M Vaccari, Ian Smail, Mj Jarvis, Ih Whittam, Cl Hale, S Jin, Jd Collier, E Daddi, J Delhaize, B Frank, Ej Murphy, M Prescott, S Sekhar, Ar Taylor, Y Ao, K Knowles, L Marchetti, Sm Randriamampandry, Z Randriamanakoto

Abstract:

We study the radio spectral properties of 2094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3 GHz, and their flux densities from MeerKAT 1.3 GHz and GMRT 325 MHz imaging data are extracted using the ‘superdeblending’ technique. The median radio spectral index is α3GHz1.3GHz=−0.80±0.01 without significant variation across the rest-frame frequencies ∼1.3–10 GHz, indicating radio spectra dominated by synchrotron radiation. On average, the radio spectrum at observer-frame 1.3–3 GHz slightly steepens with increasing stellar mass with a linear fitted slope of β = −0.08 ± 0.01, which could be explained by age-related synchrotron losses. Due to the sensitivity of GMRT 325 MHz data, we apply a further flux density cut at 3 GHz (⁠S3GHz≥50μJy) and obtain a sample of 166 SFGs with measured flux densities at 325 MHz, 1.3 GHz, and 3 GHz. On average, the radio spectrum of SFGs flattens at low frequency with the median spectral indices of α1.3GHz325MHz=−0.59+0.02−0.03 and α3.0GHz1.3GHz=−0.74+0.01−0.02⁠. At low frequency, our stacking analyses show that the radio spectrum also slightly steepens with increasing stellar mass. By comparing the far-infrared-radio correlations of SFGs based on different radio spectral indices, we find that adopting α3GHz1.3GHz for k-corrections will significantly underestimate the infrared-to-radio luminosity ratio (qIR) for >17 per cent of the SFGs with measured flux density at the three radio frequencies in our sample, because their radio spectra are significantly flatter at low frequency (0.33–1.3 GHz).
More details from the publisher
Details from ORA
More details

MIGHTEE-HI: discovery of an H I-rich galaxy group at z = 0.044 with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 2753-2765

Authors:

Shilpa Ranchod, Roger P Deane, Anastasia Ponomareva, Tariq Blecher, Bradley S Frank, Matthew Jarvis, Natasha Maddox, Wanga Mulaudzi, Marcin Glowacki, Kelley M Hess, Madalina Tudorache, Nathan J Adams, Rebecca Bowler, Jordan D Collier, Russ Taylor, Lourdes Verdes-Montenegro

Abstract:

We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. 20 galaxies are detected in H I in this z ∼ 0.044 group, with a 3σ column density sensitivity of NHI=1.6×1020cm−2⁠. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially resolved H I total intensity and velocity maps for each of the objects which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of log10(Mdyn/M⊙)=12.32⁠, and is unusually gas-rich, with an H I-to-stellar mass ratio of log10(f∗HI)=−0.2⁠, which is 0.7 dex greater than expected. The group’s high H I content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially resolved H I in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet