Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation
Monthly Notices of the Royal Astronomical Society Oxford University Press 507:256 (2021) 2643-2658
Abstract:
We study the radio spectral properties of 2094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3 GHz, and their flux densities from MeerKAT 1.3 GHz and GMRT 325 MHz imaging data are extracted using the ‘superdeblending’ technique. The median radio spectral index is α3GHz1.3GHz=−0.80±0.01 without significant variation across the rest-frame frequencies ∼1.3–10 GHz, indicating radio spectra dominated by synchrotron radiation. On average, the radio spectrum at observer-frame 1.3–3 GHz slightly steepens with increasing stellar mass with a linear fitted slope of β = −0.08 ± 0.01, which could be explained by age-related synchrotron losses. Due to the sensitivity of GMRT 325 MHz data, we apply a further flux density cut at 3 GHz (S3GHz≥50μJy) and obtain a sample of 166 SFGs with measured flux densities at 325 MHz, 1.3 GHz, and 3 GHz. On average, the radio spectrum of SFGs flattens at low frequency with the median spectral indices of α1.3GHz325MHz=−0.59+0.02−0.03 and α3.0GHz1.3GHz=−0.74+0.01−0.02. At low frequency, our stacking analyses show that the radio spectrum also slightly steepens with increasing stellar mass. By comparing the far-infrared-radio correlations of SFGs based on different radio spectral indices, we find that adopting α3GHz1.3GHz for k-corrections will significantly underestimate the infrared-to-radio luminosity ratio (qIR) for >17 per cent of the SFGs with measured flux density at the three radio frequencies in our sample, because their radio spectra are significantly flatter at low frequency (0.33–1.3 GHz).MIGHTEE-HI: discovery of an H I-rich galaxy group at z = 0.044 with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 2753-2765
Abstract:
We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. 20 galaxies are detected in H I in this z ∼ 0.044 group, with a 3σ column density sensitivity of NHI=1.6×1020cm−2. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially resolved H I total intensity and velocity maps for each of the objects which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of log10(Mdyn/M⊙)=12.32, and is unusually gas-rich, with an H I-to-stellar mass ratio of log10(f∗HI)=−0.2, which is 0.7 dex greater than expected. The group’s high H I content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially resolved H I in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.Evolution of the galaxy stellar mass function: evidence for an increasing M* from z = 2 to the present day
Monthly Notices of the Royal Astronomical Society Oxford University Press 506:4 (2021) 4933-4951
Abstract:
Utilizing optical and near-infrared broad-band photometry covering >5 deg2 in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between 0.1 < z < 2.0. We explore in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5 μm photometry when measuring the GSMF. We find that including IRAC data reduces the number of massive (log10(M/M⊙) > 11.25) galaxies found due to improved photometric redshift accuracy, but has little effect on the more numerous lower-mass galaxies. We fit the resultant GSMFs with double Schechter functions down to log10(M/M⊙) = 7.75 (9.75) at z = 0.1 (2.0) and find that the choice of source extraction software has no significant effect on the derived best-fitting parameters. However, the choice of methodology used to correct for the Eddington bias has a larger impact on the high-mass end of the GSMF, which can partly explain the spread in derived M* values from previous studies. Using an empirical correction to model the intrinsic GSMF, we find evidence for an evolving characteristic stellar mass with δlog10(M*/M⊙)/δz = −0.16±0.05(−0.11±0.05), when using SExtractor (ProFound). We argue that with widely quenched star formation rates in massive galaxies at low redshift (z < 0.5), additional growth via mergers is required in order to sustain such an evolution to a higher characteristic mass.The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: ubiquitous jet activity and constraints on star formation
Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 506:4 (2021) 5888-5907
Abstract:
We examine the distribution of radio emission from ∼42 000 quasars from the Sloan Digital Sky Survey, as measured in the LOFAR Two-metre Sky Survey (LoTSS). We present a model of the radio luminosity distribution of the quasars that assumes that every quasar displays a superposition of two sources of radio emission: active galactic nuclei (jets) and star formation. Our two-component model provides an excellent match to the observed radio flux density distributions across a wide range of redshifts and quasar optical luminosities; this suggests that the jet-launching mechanism operates in all quasars but with different powering efficiency. The wide distribution of jet powers allows for a smooth transition between the ‘radio-quiet’ and ‘radio-loud’ quasar regimes, without need for any explicit bimodality. The best-fitting model parameters indicate that the star formation rate of quasar host galaxies correlates strongly with quasar luminosity and also increases with redshift at least out to z ∼ 2. For a model where star formation rate scales as Lαbol(1+z)β, we find α = 0.47 ± 0.01 and β = 1.61 ± 0.05, in agreement with far-infrared studies. Quasars contribute ≈0.15 per cent of the cosmic star formation rate density at z = 0.5, rising to 0.4 per cent by z ∼ 2. The typical radio jet power is seen to increase with both increasing optical luminosity and black hole mass independently, but does not vary with redshift, suggesting intrinsic properties govern the production of the radio jets. We discuss the implications of these results for the triggering of quasar activity and the launching of jets.Deep Extragalactic VIsible Legacy Survey (DEVILS): consistent multiwavelength photometry for the DEVILS regions (COSMOS, XMMLSS, and ECDFS)
Monthly Notices of the Royal Astronomical Society Oxford University Press 506:1 (2021) 256-287