Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole

Astronomy and Astrophysics European Southern Observatory 648 (2021) A14

Authors:

J Ramasawmy, Je Geach, Mj Hardcastle, Pn Best, M Bonato, M Bondi, G Calistro Rivera, Rk Cochrane, Je Conway, K Coppin, Kj Duncan, Js Dunlop, M Franco, C Garcia-Vergara, Matt Jarvis, R Kondapally, I McCheyne, I Prandoni, Hja Rottgering, Djb Smith, C Tasse, L Wang

Abstract:

Aims. We investigate the radio properties of a sample of 850 μm-selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS) using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. This sample consists of 53 sources, 41 of which are detected at >5σ at 150 MHz.
Methods. Combining these data with additional observations at 324 MHz, 610 MHz, and 1.4 GHz from the Giant Metrewave Radio Telescope and the Jansky Very Large Array, we find a variety of radio spectral shapes and luminosities (L1.4 GHz ranging from ~4 × 1023−1 × 1025) within our sample despite their similarly bright submillimetre flux densities (>4 mJy). We characterise their spectral shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ~20% of sources, we investigate the differences between sources with extremely flat low-frequency spectra and those with ‘normal’ radio spectral indices (α > −0.25).
Results. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images, and likely relate to galaxy properties that we cannot resolve, on scales ≲1 kpc. We attribute the observed spectral flattening in the radio to free–free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies in the literature, which find examples of non-uniform dust distributions on scales of ~100 pc, with evidence for clumps and knots in the interstellar medium. Additionally, we find two bright (>6 mJy) S2CLS sources undetected at all other wavelengths. We speculate that these objects may be very high redshift sources, likely residing at z > 4.
More details from the publisher
Details from ORA
More details

Extremely deep 150 MHz source counts from the LoTSS Deep Fields

Astronomy and Astrophysics EDP Sciences 648 (2021) A5

Authors:

S Mandal, I Prandoni, Mj Hardcastle, Tw Shimwell, Ht Intema, C Tasse, Rj van Weeren, H Algera, Kl Emig, Hja Roettgering, Dj Schwarz, Tm Siewert, Pn Best, M Bonato, M Bondi, Mj Jarvis, R Kondapally, Sk Leslie, Vh Mahatma, J Sabater, E Retana-Montenegro, Wl Williams

Abstract:

With the advent of new generation low-frequency telescopes, such as the LOw Frequency ARray (LOFAR), and improved calibration techniques, we have now started to unveil the subgigahertz radio sky with unprecedented depth and sensitivity. The LOFAR Two Meter Sky Survey (LoTSS) is an ongoing project in which the whole northern radio sky will be observed at 150 MHz with a sensitivity better than 100 Jy beam1 at a resolution of 600. Additionally, deeper observations are planned to cover smaller areas with higher sensitivity. The Lockman Hole, the Boötes, and the Elais-N1 regions are among the most well known northern extra-galactic fields and the deepest of the LoTSS Deep Fields so far. We exploited these deep observations to derive the deepest radio source counts at 150 MHz to date. Our counts are in broad agreement with those from the literature and show the well known upturn at 1 mJy, mainly associated with the emergence of the star-forming galaxy population. More interestingly, our counts show, for the first time a very pronounced drop around S-2 mJy, which results in a prominent “bump” at sub-mJy flux densities. Such a feature was not observed in previous counts’ determinations (neither at 150MHz nor at a higher frequency). While sample variance can play a role in explaining the observed discrepancies, we believe this is mostly the result of a careful analysis aimed at deblending confused sources and removing spurious sources and artifacts from the radio catalogs. This “drop and bump” feature cannot be reproduced by any of the existing state-of-the-art evolutionary models, and it appears to be associated with a deficiency of active galactic nuclei (AGN) at an intermediate redshift (1 < z < 2) and an excess of low-redshift (z < 1) galaxies and/or AGN.
More details from the publisher
Details from ORA
More details

The LOFAR Two-Meter Sky Survey: Deep Fields Data Release 1 I. Direction-dependent calibration and imaging

Astronomy and Astrophysics EDP Sciences 648:2021 (2021) A1

Authors:

C Tasse, T Shimwell, Mj Hardcastle, Sp O'Sullivan, R van Weeren, Pn Best, L Bester, B Hugo, O Smirnov, J Sabater, G Calistro-Rivera, F de Gasperin, Lk Morabito, H Roettgering, Wl Williams, M Bonato, M Bondi, A Botteon, M Brueggen, G Brunetti, Kt Chyzy, Ma Garrett, G Guerkan, Mj Jarvis, R Kondapally, S Mandal, I Prandoni, A Repetti, E Retana-Montenegro, Dj Schwarz, A Shulevski, Y Wiaux

Abstract:

The Low Frequency Array (LOFAR) is an ideal instrument to conduct deep extragalactic surveys. It has a large field of view and is sensitive to large-scale and compact emission. It is, however, very challenging to synthesize thermal noise limited maps at full resolution, mainly because of the complexity of the low-frequency sky and the direction dependent effects (phased array beams and ionosphere). In this first paper of a series, we present a new calibration and imaging pipeline that aims at producing high fidelity, high dynamic range images with LOFAR High Band Antenna data, while being computationally efficient and robust against the absorption of unmodeled radio emission. We apply this calibration and imaging strategy to synthesize deep images of the Boötes and Lockman Hole fields at ~150 MHz, totaling ~80 and ~100 h of integration, respectively, and reaching unprecedented noise levels at these low frequencies of â 30 and â 23 μJy beam-1 in the inner ~3 deg2. This approach is also being used to reduce theâ» LOTSS-wide data for the second data release.
More details from the publisher
Details from ORA
More details

The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 III. Host-galaxy identifications and value added catalogues

Astronomy and Astrophysics EDP Sciences 648:2021 (2021) A3

Authors:

R Kondapally, Pn Best, Mj Hardcastle, D Nisbet, M Bonato, J Sabater, Kj Duncan, I McCheyne, Rk Cochrane, Raa Bowler, Wl Williams, Tw Shimwell, C Tasse, Jh Croston, A Goyal, M Jamrozy, Mj Jarvis, Vh Mahatma, Hja Roettgering, Djb Smith, A Wolowska, M Bondi, M Brienza, Mji Brown, M Brueggen, K Chambers, Ma Garrett, G Guerkan, M Huber, M Kunert-Bajraszewska, E Magnier, B Mingo, R Mostert, B Nikiel-Wroczynski, Sp O'Sullivan, R Paladino, T Ploeckinger, I Prandoni, Mj Rosenthal, Dj Schwarz, A Shulevski, Jd Wagenveld, L Wang

Abstract:

We present the source associations, cross-identifications, and multi-wavelength properties of the faint radio source population detected in the deep tier of the LOFAR Two Metre Sky Survey (LoTSS): the LoTSS Deep Fields. The first LoTSS Deep Fields data release consists of deep radio imaging at 150 MHz of the ELAIS-N1, Lockman Hole, and Boötes fields, down to RMS sensitives of around 20, 22, and 32 μJy beam-1, respectively. These fields are some of the best studied extra-galactic fields in the northern sky, with existing deep, wide-area panchromatic photometry from X-ray to infrared wavelengths, covering a total of ≈26 deg2. We first generated improved multi-wavelength catalogues in ELAIS-N1 and Lockman Hole; combined with the existing catalogue for Boötes, we present forced, matched aperture photometry for over 7.2 million sources across the three fields. We identified multi-wavelength counterparts to the radio detected sources, using a combination of the Likelihood Ratio method and visual classification, which greatly enhances the scientific potential of radio surveys and allows for the characterisation of the photometric redshifts and the physical properties of the host galaxies. The final radio-optical cross-matched catalogue consists of 81 951 radio-detected sources, with counterparts identified and multi-wavelength properties presented for 79 820 (>97%) sources. We also examine the properties of the host galaxies, and through stacking analysis find that the radio population with no identified counterpart is likely dominated by active galactic nuclei (AGN) at z ~ 3-4. This dataset contains one of the largest samples of radio-selected star-forming galaxies and AGN at these depths, making it ideal for studying the history of star-formation, and the evolution of galaxies and AGN across cosmic time.
More details from the publisher
Details from ORA
More details

The LOFAR Two-meter Sky Survey: Deep fields data release 1: IV. Photometric redshifts and stellar masses

Astronomy and Astrophysics EDP Sciences 648 (2021) A4

Authors:

Kj Duncan, R Kondapally, Mji Brown, M Bonato, Pn Best, Hja Roettgering, M Bondi, Raa Bowler, Rk Cochrane, G Guerkan, Mj Hardcastle, Mj Jarvis, M Kunert-Bajraszewska, Sk Leslie, K Malek, Lk Morabito, Sp O'Sullivan, I Prandoni, J Sabater, Tw Shimwell, Djb Smith, L Wang, A Wolowska, C Tasse

Abstract:

The Low Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) is a sensitive, high-resolution 120-168 MHz survey split across multiple tiers over the northern sky. The first LoTSS Deep Fields data release consists of deep radio continuum imaging at 150 MHz of the Boötes, European Large Area Infrared Space Observatory Survey-North 1, and Lockman Hole fields, down to rms sensitivities of ~32, 20, and 22 μJy beam−1, respectively. In this paper we present consistent photometric redshift (photo-z) estimates for the optical source catalogues in all three fields – totalling over 7 million sources (~5 million after limiting to regions with the best photometric coverage). Our photo-z estimation uses a hybrid methodology that combines template fitting and machine learning and is optimised to produce the best possible performance for the radio continuum selected sources and the wider optical source population. Comparing our results with spectroscopic redshift samples, we find a robust scatter ranging from 1.6 to 2% for galaxies and 6.4 to 7% for identified optical, infrared, or X-ray selected active galactic nuclei. Our estimated outlier fractions (|zphot−zspec|/(1+zspec)>0.15) for the corresponding subsets range from 1.5 to 1.8% and 18 to 22%, respectively. Replicating trends seen in analyses of previous wide-area radio surveys, we find no strong trend in photo-z quality as a function of radio luminosity for a fixed redshift. We exploit the broad wavelength coverage available within each field to produce galaxy stellar mass estimates for all optical sources at z < 1.5. Stellar mass functions derived for each field are used to validate our mass estimates, with the resulting estimates in good agreement between each field and with published results from the literature.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet