Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Deep extragalactic visible legacy survey (DEVILS): stellar mass growth by morphological type since z=1

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 505:1 (2021) 136-160

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Rogier A Windhorst, Malcolm Bremer, Steven Phillipps, Matt Jarvis, Benne W Holwerda, Claudia del P Lagos, Soheil Koushan, Malgorzata Siudek, Natasha Maddox, Jessica E Thorne, Pascal Elahi

Abstract:

Using high-resolution Hubble Space Telescope imaging data, we perform a visual morphological classification of ∼36 000 galaxies at z < 1 in the deep extragalactic visible legacy survey/cosmological evolution survey region. As the main goal of this study, we derive the stellar mass function (SMF) and stellar mass density (SMD) sub-divided by morphological types. We find that visual morphological classification using optical imaging is increasingly difficult at z > 1 as the fraction of irregular galaxies and merger systems (when observed at rest-frame UV/blue wavelengths) dramatically increases. We determine that roughly two-thirds of the total stellar mass of the Universe today was in place by z ∼ 1. Double-component galaxies dominate the SMD at all epochs and increase in their contribution to the stellar mass budget to the present day. Elliptical galaxies are the second most dominant morphological type and increase their SMD by ∼2.5 times, while by contrast, the pure-disc population significantly decreases by ∼85 per cent⁠. According to the evolution of both high- and low-mass ends of the SMF, we find that mergers and in situ evolution in discs are both present at z < 1, and conclude that double-component galaxies are predominantly being built by the in situ evolution in discs (apparent as the growth of the low-mass end with time), while mergers are likely responsible for the growth of ellipticals (apparent as the increase of intermediate/high-mass end).
More details from the publisher
Details from ORA
More details
More details

The radio galaxy population in the SIMBA simulations

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:3 (2021) 3492-3509

Authors:

Nicole Thomas, Romeel Davé, Matt J Jarvis, Daniel Anglés-Alcázar

Abstract:

We examine the 1.4 GHz radio luminosities of galaxies arising from star formation and active galactic nuclei (AGNs) within the state-of-the-art cosmological hydrodynamic simulation SIMBA. SIMBA grows black holes via gravitational torque limited accretion from cold gas and Bondi accretion from hot gas, and employs AGN feedback including jets at low Eddington ratios. We define a population of radio loud AGNs (RLAGNs) based on the presence of ongoing jet feedback. Within RLAGN, we define high and low excitation radio galaxies (HERGs and LERGs) based on their dominant mode of black hole accretion: torque limited accretion representing feeding from a cold disc, or Bondi representing advection-dominated accretion from a hot medium. SIMBA predicts good agreement with the observed radio luminosity function (RLF) and its evolution, overall as well as separately for HERGs and LERGs. Quiescent galaxies with AGN-dominated radio flux dominate the RLF at ≳1022−23 W Hz−1, while star formation dominates at lower radio powers. Overall, RLAGNs have higher black hole accretion rates and lower star formation rates than non-RLAGN at a given stellar mass or velocity dispersion, but have similar black hole masses. SIMBA predicts an LERG number density of 8.53 Mpc−3, ∼10× higher than for HERGs, broadly as observed. While LERGs dominate among most massive galaxies with the largest black holes and HERGs dominate at high specific star formation rates, they otherwise largely populate similar-sized dark matter haloes and have similar host galaxy properties. SIMBA thus predicts that deeper radio surveys will reveal an increasing overlap between the host galaxy demographics of HERGs and LERGs.
More details from the publisher
Details from ORA
More details
More details

MIGHTEE: are giant radio galaxies more common than we thought?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 501:3 (2021) 3833-3845

Authors:

J Delhaize, I Heywood, M Prescott, Mj Jarvis, I Delvecchio, Ih Whittam, Sv White, Mj Hardcastle, Cl Hale, J Afonso, Y Ao, M Brienza, M Brueggen, Jd Collier, E Daddi, M Glowacki, N Maddox, Lk Morabito, I Prandoni, Z Randriamanakoto, S Sekhar, Fangxia An, Nj Adams, S Blyth, Raa Bowler, L Leeuw, L Marchetti, Sm Randriamampandry, K Thorat, N Seymour, O Smirnov, Ar Taylor, C Tasse, M Vaccari
More details from the publisher
More details

GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3-2.2 mu m extragalactic background light

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:2 (2021) 2033-2052

Authors:

Soheil Koushan, Simon P Driver, Sabine Bellstedt, Luke J Davies, Aaron SG Robotham, Claudia del P Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E Thorne, Malcolm Bremer, Bw Holwerda, Matt J Jarvis, Andrew M Hopkins, Malgorzata Siudek, Rogier A Windhorst

Abstract:

We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35  μm to 2.2  μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ-ray measurements are now fully consistent to within ∼10 per cent⁠, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M⊙ yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.
More details from the publisher
Details from ORA
More details

MIGHTEE-HI: The H I emission project of the MeerKAT MIGHTEE survey

Astronomy and Astrophysics EDP Sciences 646:February 2021 (2021) A35

Authors:

N Maddox, Bs Frank, Aa Ponomareva, Matthew Jarvis, Eak Adams, R Davé, Ta Oosterloo, Mg Santos, Sl Blyth, M Glowacki, Rc Kraan-Korteweg, W Mulaudzi, B Namumba, I Prandoni, Sha Rajohnson, K Spekkens, Nj Adams, Raa Bowler, Jd Collier, I Heywood, S Sekhar, Ar Taylor

Abstract:

We present the H I emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (H I) ever undertaken, extending our knowledge of H I emission to z = 0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0 <  z <  0.4 will be detected directly in H I, with statistical detections extending to z = 0.6. The survey allows us to explore H I as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with H I mass < 108 M⊙, which allows us to study the low-mass galaxy population. The 20 deg2 main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, H I, and stellar mass ranges of the sample to date.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet