Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Galaxy and mass assembly (GAMA): the 325 MHz radio luminosity function of AGN and star-forming galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 457:1 (2016) 730-744

Authors:

M Prescott, T Mauch, Matthew Jarvis, K McAlpine, DJB Smith, S Fine, R Johnston, MJ Hardcastle, IK Baldry, S Brough, MJI Brown, MN Bremer, SP Driver, AM Hopkins, LS Kelvin, J Loveday, P Norberg, D Obreschkow, EM Sadler

Abstract:

Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star formation rates. In this paper, we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg2 radio survey conducted with the Giant Metrewave Radio Telescope, with optical imaging and redshifts from the Galaxy And Mass Assembly survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to z = 0.5 as a double power law, and parametrizing the evolution as Φ ∝ (1 + z)k, we find evolution parameters of k = 0.92 ± 0.95 assuming pure density evolution and k = 2.13 ± 1.96 assuming pure luminosity evolution. We find that the Low Excitation Radio Galaxies are the dominant population in space density at lower luminosities. Comparing our 325 MHz observations with radio continuum imaging at 1.4 GHz, we determine separate radio luminosity functions for steep- and flat-spectrum AGN, and show that the beamed population of flat-spectrum sources in our sample can be shifted in number density and luminosity to coincide with the unbeamed population of steep-spectrum sources, as is expected in the orientation-based unification of AGN.
More details from the publisher
Details from ORA
More details
Details from ArXiV

A mature galaxy cluster at z = 1.58 around the radio galaxy 7C 1753+6311

Astrophysical Journal American Astronomical Society 816:2 (2016) ARTN 83

Authors:

EA Cooke, NA Hatch, D Stern, A Rettura, M Brodwin, A Galametz, D Wylezalek, C Bridge, CJ Conselice, CD Breuck, AH Gonzalez, Matthew Jarvis

Abstract:

We report on the discovery of a z = 1.58 mature cluster around the high-redshift radio galaxy 7C 1753+6311, first identified in the Clusters Around Radio-loud active galactic nuclei survey. Two-thirds of the excess galaxies within the central 1 Mpc lie on a red sequence with a color that is consistent with an average formation redshift of zf ~ 3. We show that 80 ± 6% of the red sequence galaxies in the cluster core are quiescent, while the remaining 20% are red due to dusty star formation. We demonstrate that the cluster has an enhanced quiescent galaxy fraction that is three times that of the control field. We also show that this enhancement is mass dependent: 91 ± 9% of the ${M}_{*}\gt {10}^{10.5}$M⊙ cluster galaxies are quiescent, compared to only 36 ± 2% of field galaxies, whereas the fraction of quiescent galaxies with lower masses is the same in the cluster and field environments. The presence of a dense core and a well-formed, quiescent red sequence suggest that this is a mature cluster. This means that distant radio galaxies do not solely reside in young, uncollapsed protoclusters, rather they can be found in clusters in a wide range of evolutionary states.
More details from the publisher
Details from ORA
More details
Details from ArXiV

A large sky survey with MeerKAT

Proceedings of Science Part F138095 (2016)

Authors:

MG Santos, P Bull, S Camera, S Chen, J Fonseca, I Heywood, M Hilton, M Jarvis, GIG Józsa, K Knowles, L Leeuw, R Maartens, E Malefahlo, K McAlpine, K Moodley, P Patel, A Pourtsidou, M Prescott, K Spekkens, R Taylor, A Witzemann, I Whittam

Abstract:

© Copyright owned by the author(s). We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for cosmological applications, which require large volumes. In particular, a large survey over ∼ 4,000deg2for ∼ 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as the first constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. The survey will also produce a large continuum galaxy sample down to a depth of 5 µJy in L-band, unmatched by any other concurrent telescope, which will allow to study the large-scale structure of the Universe out to high redshifts. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters, and the discovery of rare high-redshift AGN that can be used to probe the epoch of reionization as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications, as described in the top priority SKA key science projects.

A large sky survey with MeerKAT

Proceedings of Science (2016)

Authors:

MG Santos, P Bull, S Camera, S Chen, J Fonseca, I Heywood, M Hilton, M Jarvis, GIG Józsa, K Knowles, L Leeuw, R Maartens, E Malefahlo, K McAlpine, K Moodley, P Patel, A Pourtsidou, M Prescott, K Spekkens, R Taylor, A Witzemann, I Whittam

Abstract:

We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for cosmological applications, which require large volumes. In particular, a large survey over ∼ 4,000deg2 for ∼ 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as the first constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. The survey will also produce a large continuum galaxy sample down to a depth of 5 µJy in L-band, unmatched by any other concurrent telescope, which will allow to study the large-scale structure of the Universe out to high redshifts. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters, and the discovery of rare high-redshift AGN that can be used to probe the epoch of reionization as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications, as described in the top priority SKA key science projects.

LADUMA: looking at the distant universe with the MeerKAT array

Proceedings of Science Part F138095 (2016)

Authors:

SL Blyth, AJ Baker, BW Holwerda, BA Bassett, MA Bershady, A Bouchard, FH Briggs, B Catinella, L Chemin, SM Crawford, CM Cress, D Cunnama, JK Darling, R Davé, RP Deane, WJG de Blok, EC Elson, A Faltenbacher, S February, X Fernández, BS Frank, E Gawiser, PA Henning, KM Hess, I Heywood, JP Hughes, MJ Jarvis, SJ Kannappan, NS Katz, D Kereš, HR Klöckner, RC Kraan-Korteweg, P Lah, MD Lehnert, AK Leroy, M Lochner, N Maddox, S Makhathini, GR Meurer, MJ Meyer, K Moodley, R Morganti, D Obreschkow, SH Oh, TA Oosterloo, DJ Pisano, A Popping, G Popping, S Ravindranath, E Schinnerer, AC Schröder, K Sheth, R Skelton, OM Smirnov, M Smith, RS Somerville, R Srianand, L Staveley-Smith, IM Stewart, M Vaccari, P Väisänen, KJ van der Heyden, W van Driel, MAW Verheijen, F Walter, EM Wilcots, TB Williams, PA Woudt, JF Wu, MA Zwaan, JTL Zwart, S Rawlings

Abstract:

© Copyright owned by the author(s). The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Current page 40
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet