Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Cold Dust Emission from X-ray AGN in the SCUBA-2 Cosmology Legacy Survey: Dependence on Luminosity, Obscuration and AGN Activity

Monthly Notices Of The Royal Astronomical Society Oxford University Press 454:1 (2015) 419-438

Authors:

Manda Banerji, Richard G McMahon, Chris J Willott, James E Geach, Chris M Harrison, Susannah Alaghband-Zadeh, David Alexander, Nathan Bourne, Kristen EK Coppin, James S Dunlop, Duncan Farrah, Matthew Jarvis, Michal J Michalowski, Matthew Page, Daniel Smith, Mark Swinbank, Myrto Symeonidis, PPVD Werf, Paul P Van der Werf

Abstract:

We study the 850um emission in X-ray selected AGN in the 2 sq-deg COSMOS field using new data from the SCUBA-2 Cosmology Legacy Survey. We find 19 850um bright X-ray AGN in a high-sensitivity region covering 0.89 sq-deg with flux densities of S850=4-10 mJy. The 19 AGN span the full range in redshift and hard X-ray luminosity covered by the sample - 0.71 X-ray AGN - S850=0.71+/-0.08mJy. We explore trends in the stacked 850um flux densities with redshift, finding no evolution in the average cold dust emission over the redshift range probed. For Type 1 AGN, there is no significant correlation between the stacked 850um flux and hard X-ray luminosity. However, in Type 2 AGN the stacked submm flux is a factor of 2 higher at high luminosities. When averaging over all X-ray luminosities, no significant differences are found in the stacked submm fluxes of Type 1 and Type 2 AGN as well as AGN separated on the basis of X-ray hardness ratios and optical-to-infrared colours. However, at log10(LX) >44.4, dependences in average submm flux on the optical-to-infrared colours become more pronounced. We argue that these high luminosity AGN represent a transition from a secular to a merger-driven evolutionary phase where the star formation rates and accretion luminosities are more tightly coupled. Stacked AGN 850um fluxes are compared to the stacked fluxes of a mass-matched sample of K-band selected non-AGN galaxies. We find that at 10.5
More details from the publisher
Details from ORA
More details
Details from ArXiV

The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3

Monthly Notices of the Royal Astronomical Society Oxford University Press 453:3 (2015) 2540-2557

Authors:

Russell Johnston, Mattia Vaccari, Matthew Jarvis, Matthew Smith, Elodie Giovannoli, Boris Häußler, Matthew Prescott

Abstract:

We investigate the star-formation rate (SFR) and stellar mass ($M_*$) relation of a star-forming (SF) galaxy sample in the XMM-LSS field to $z\sim 3.0$ using the near-infrared data from the VISTA Deep Extragalactic Observations (VIDEO) survey. Combining VIDEO with broad-band photometry, we use the SED fitting algorithm CIGALE to derive SFRs and $M_*$ and have adapted it to account for the full photometric redshift PDF uncertainty. Applying a SF selection using the D4000 index, we find evidence for strong evolution in the normalisation of the SFR-$M_*$ relation out to $z\sim 3$ and a roughly constant slope of (SFR $\propto M_*^{\alpha}$) $\alpha=0.69\pm0.02$ to $z\sim 1.7$. We find this increases close to unity toward $z\sim2.65$. Alternatively, if we apply a colour selection, we find a distinct turnover in the SFR-$M_*$ relation between $0.7\lesssim z\lesssim2.0$ at the high mass end, and suggest that this is due to an increased contamination from passive galaxies. We find evolution of the specific SFR $\propto(1+z)^{2.60}$ at $\log(M_*)\sim$10.5, out to $z\lesssim2.4$ with an observed flattening beyond $z\sim$ 2 with increased stellar mass. Comparing to a range of simulations we find the analytical scaling relation approaches, that invoke an equilibrium model, a good fit to our data, suggesting that a continual smooth accretion regulated by continual outflows may be a key driver in the overall growth of SFGs.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

Monthly Notices Of The Royal Astronomical Society Oxford University Press 453:4 (2015) 4244-4263

Authors:

Imogen Whittam, Julia Riley, Dave Green, Matthew Jarvis, Mattia Vaccari

Abstract:

A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below $\sim 1$ mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the SKADS Simulated Skies; a population of low-redshift starforming galaxies predicted by the simulation is not found in the observed sample.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Counting quasar–radio source pairs to derive the millijansky radio luminosity function and clustering strength to z = 3.5

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2692-2699

Authors:

S Fine, T Shanks, R Johnston, Matthew Jarvis, T Mauch

Abstract:

We apply a cross-correlation technique to infer the S > 3 mJy radio luminosity function (RLF) from the NRAO VLA Sky Survey (NVSS) to z ∼ 3.5. We measure Σ the over density of radio sources around spectroscopically confirmed quasars. Σ is related to the space density of radio sources at the distance of the quasars and the clustering strength between the two samples, hence knowledge of one constrains the other. Under simple assumptions we find Φ ∝ (1 + z)3.7 ± 0.7 out to z ∼ 2. Above this redshift the evolution slows and we constrain the evolution exponent to <1.01 (2σ). This behaviour is almost identical to that found by previous authors for the bright end of the RLF potentially indicating that we are looking at the same population. This suggests that the NVSS is dominated by a single population; most likely radio sources associated with high-excitation cold-mode accretion. Inversely, by adopting a previously modelled RLF we can constrain the clustering of high-redshift radio sources and find a clustering strength consistent with r0 = 15.0 ± 2.5 Mpc up to z ∼ 3.5. This is inconsistent with quasars at low redshift and some measurements of the clustering of bright FR II sources. This behaviour is more consistent with the clustering of lower luminosity radio galaxies in the local Universe. Our results indicate that the high-excitation systems dominating our sample are hosted in the most massive galaxies at all redshifts sampled.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The formation history of massive cluster galaxies as revealed by CARLA

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2318-2336

Authors:

EA Cooke, NA Hatch, A Rettura, D Wylezalek, A Galametz, D Stern, M Brodwin, SI Muldrew, O Almaini, CJ Conselice, PR Eisenhardt, WG Hartley, Matthew Jarvis, N Seymour

Abstract:

We use a sample of 37 of the densest clusters and protoclusters across 1.3 ≤ z ≤ 3.2 from the Clusters Around Radio-Loud AGN (CARLA) survey to study the formation of massive cluster galaxies. We use optical i′-band and infrared 3.6 and 4.5 μm images to statistically select sources within these protoclusters and measure their median observed colours; 〈i′ − [3.6]〉. We find the abundance of massive galaxies within the protoclusters increases with decreasing redshift, suggesting these objects may form an evolutionary sequence, with the lower redshift clusters in the sample having similar properties to the descendants of the high-redshift protoclusters. We find that the protocluster galaxies have an approximately unevolving observed-frame i′ − [3.6] colour across the examined redshift range. We compare the evolution of the 〈i′ − [3.6]〉 colour of massive cluster galaxies with simplistic galaxy formation models. Taking the full cluster population into account, we show that the formation of stars within the majority of massive cluster galaxies occurs over at least 2 Gyr, and peaks at z ∼ 2–3. From the median i′ − [3.6] colours, we cannot determine the star formation histories of individual galaxies, but their star formation must have been rapidly terminated to produce the observed red colours. Finally, we show that massive galaxies at z > 2 must have assembled within 0.5 Gyr of them forming a significant fraction of their stars. This means that few massive galaxies in z > 2 protoclusters could have formed via dry mergers.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet