The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5
Monthly Notices of the Royal Astronomical Society Oxford University Press 452:2 (2015) 1817-1840
Abstract:
We present the results of a search for bright (-22.7 ≤MUV ≤-20.5) Lyman-break galaxies at z≃6 within a total of 1.65 deg < sup > 2 < /sup > of imaging in theUltraVISTA/Cosmological Evolution Survey (COSMOS) and United Kingdom Infrared Telescope Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) fields. The deep near-infrared imaging available in the two independent fields, in addition to deep optical (including z′-band) data, enables the sample of z ≃ 6 star-forming galaxies to be securely detected longward of the break (in contrast to several previous studies). We show that the expected contamination rate of our initial sample by cool Galactic brown dwarfs is ≲3 per cent and demonstrate that they can be effectively removed by fitting brown dwarf spectral templates to the photometry. At z ≃ 6, the galaxy surface density in the UltraVISTA field exceeds that in the UDS by a factor of ≃ 1.8, indicating strong cosmic variance even between degree-scale fields at z > 5. We calculate the bright end of the restframe Ultraviolet (UV) luminosity function (LF) at z ≃ 6. The galaxy number counts are a factor of ~1.7 lower than predicted by the recent LF determination by Bouwens et al. In comparison to other smaller area studies, we find an evolution in the characteristic magnitude between z ≃ 5 and z ≃ 7 of δM* ~ 0.4, and show that a double power law or a Schechter function can equally well describe the LF at z = 6. Furthermore, the bright end of the LF appears to steepen from z ≃ 7 to z ≃ 5, which could indicate the onset of mass quenching or the rise of dust obscuration, a conclusion supported by comparing the observed LFs to a range of theoretical model predictions.$\textit{Herschel}$-ATLAS:The connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 452:4 (2015) 3776-3794
Abstract:
We examine the relationship between star formation and AGN activity by constructing matched samples of local radio-loud and radio-quiet AGN in the HerschelATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and WISE 22-μm luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using Herschel 250-μm luminosity and stellar mass measurements from the SDSS MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with Herschel we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radioquiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.Cosmology from a SKA HI intensity mapping survey
Sissa Medialab Srl (2015) 019
Cosmology with SKA radio continuum surveys
Proceedings of Science Sissa Medialab srl (2015)
Abstract:
Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to \sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in the coming decades.Identifying the first generation of radio powerful AGN in the Universe with the SKA
Proceedings of Science Sissa Medialab srl (2015)